Build a Career in Data Science


Emily Robinson - 2020
    Industry experts Jacqueline Nolis and Emily Robinson lay out the soft skills you’ll need alongside your technical know-how in order to succeed in the field. Following their clear and simple instructions you’ll craft a resume that hiring managers will love, learn how to ace your interview, and ensure you hit the ground running in your first months at your new job. Once you’ve gotten your foot in the door, learn to thrive as a data scientist by handling high expectations, dealing with stakeholders, and managing failures. Finally, you’ll look towards the future and learn about how to join the broader data science community, leaving a job gracefully, and plotting your career path. With this book by your side you’ll have everything you need to ensure a rewarding and productive role in data science.

Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale


Neha Narkhede - 2017
    And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Practical SQL: A Beginner's Guide to Storytelling with Data


Anthony DeBarros - 2022
    An approachable guide to programming in SQL (Structured Query Language) that will teach even beginning programmers how to build powerful databases and analyze data to find meaningful information.Practical SQL is an approachable and fast-paced guide to SQL (Structured Query Language) written by longtime professional journalist Anthony DeBarros. SQL is the primary tool that programmers, web developers, researchers, journalists, and others use to explore data in a database. DeBarros focuses on using SQL to find the story in data, with the aid of the popular open-source database PostgreSQL and the pgAdmin interface.This thoroughly revised second edition includes a new chapter describing how to set up PostgreSQL and more extensive discussion of pgAdmin's best features. The author has also added a chapter on the JSON data format that shows readers how to store and query JSON data. DeBarros has also updated the data in the book throughout, added coverage of additional topics, and perfected the book's examples.Readers love DeBarros's use of exercises and real-world examples that demonstrate how to:- Create databases and related tables using your own data - Correctly define data typesAggregate, sort, and filter data to find patterns - Clean their data and transfer data as text files - Create advanced queries and automate tasksThis book uses PostgreSQL, but the SQL syntax is applicable to many database applications, including Microsoft SQL Server and MySQL.

Hands-On Programming with R: Write Your Own Functions and Simulations


Garrett Grolemund - 2014
    With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them

The Art of Data Science: A Guide for Anyone Who Works with Data


Roger D. Peng - 2015
    The authors have extensive experience both managing data analysts and conducting their own data analyses, and have carefully observed what produces coherent results and what fails to produce useful insights into data. This book is a distillation of their experience in a format that is applicable to both practitioners and managers in data science.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World


Pedro Domingos - 2015
    In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

The Soul of a New Machine


Tracy Kidder - 1981
    Tracy Kidder got a preview of this world in the late 1970s when he observed the engineers of Data General design and build a new 32-bit minicomputer in just one year. His thoughtful, prescient book, The Soul of a New Machine, tells stories of 35-year-old "veteran" engineers hiring recent college graduates and encouraging them to work harder and faster on complex and difficult projects, exploiting the youngsters' ignorance of normal scheduling processes while engendering a new kind of work ethic.These days, we are used to the "total commitment" philosophy of managing technical creation, but Kidder was surprised and even a little alarmed at the obsessions and compulsions he found. From in-house political struggles to workers being permitted to tease management to marathon 24-hour work sessions, The Soul of a New Machine explores concepts that already seem familiar, even old-hat, less than 20 years later. Kidder plainly admires his subjects; while he admits to hopeless confusion about their work, he finds their dedication heroic. The reader wonders, though, what will become of it all, now and in the future. —Rob Lightner

97 Things Every Programmer Should Know: Collective Wisdom from the Experts


Kevlin Henney - 2010
    With the 97 short and extremely useful tips for programmers in this book, you'll expand your skills by adopting new approaches to old problems, learning appropriate best practices, and honing your craft through sound advice.With contributions from some of the most experienced and respected practitioners in the industry--including Michael Feathers, Pete Goodliffe, Diomidis Spinellis, Cay Horstmann, Verity Stob, and many more--this book contains practical knowledge and principles that you can apply to all kinds of projects.A few of the 97 things you should know:"Code in the Language of the Domain" by Dan North"Write Tests for People" by Gerard Meszaros"Convenience Is Not an -ility" by Gregor Hohpe"Know Your IDE" by Heinz Kabutz"A Message to the Future" by Linda Rising"The Boy Scout Rule" by Robert C. Martin (Uncle Bob)"Beware the Share" by Udi Dahan

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Programming in Haskell


Graham Hutton - 2006
    This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Database Management Systems


Raghu Ramakrishnan - 1997
    Coherent explanations and practical examples have made this one of the leading texts in the field. The third edition continues in this tradition, enhancing it with more practical material. The new edition has been reorganized to allow more flexibility in the way the course is taught. Now, instructors can easily choose whether they would like to teach a course which emphasizes database application development or a course that emphasizes database systems issues. New overview chapters at the beginning of parts make it possible to skip other chapters in the part if you don't want the detail.More applications and examples have been added throughout the book, including SQL and Oracle examples. The applied flavor is further enhanced by the two new database applications chapters.

OpenGL SuperBible: Comprehensive Tutorial and Reference


Richard S. Wright Jr. - 1996
    If you want to leverage OpenGL 2.1's major improvements, you really need the Fourth Edition. It's a comprehensive tutorial, systematic API reference, and massive code library, all in one. You'll start with the fundamental techniques every graphics programmer needs: transformations, lighting, texture mapping, and so forth. Then, building on those basics, you'll move towards newer capabilities, from advanced buffers to vertex shaders. Of course, OpenGL's cross-platform availability remains one of its most compelling features. This book's extensive multiplatform coverage has been thoroughly rewritten, and now addresses everything from Windows Vista to OpenGL ES for handhelds. This is stuff you absolutely want the latest edition for. A small but telling point: This book's recently been invited into Addison-Wesley's OpenGL Series, making it an "official" OpenGL book -- and making a powerful statement about its credibility. Bill Camarda, from the August 2007 href="http://www.barnesandnoble.com/newslet... Only