Book picks similar to
Elements Of The History Of Mathematics by Nicolas Bourbaki
mathematics
math
history
maths
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
Colin Conrad Adams - 1994
The study of knots has led to important applications in DNA research and the synthesis of new molecules, and has had a significant impact on statistical mechanics and quantum field theory. Colin Adams’s The Knot Book is the first book to make cutting-edge research in knot theory accessible to a non-specialist audience. Starting with the simplest knots, Adams guides readers through increasingly more intricate twists and turns of knot theory, exploring problems and theorems mathematicians can now solve, as well as those that remain open. He also explores how knot theory is providing important insights in biology, chemistry, physics, and other fields. The new paperback edition has been updated to include the latest research results, and includes hundreds of illustrations of knots, as well as worked examples, exercises and problems. With a simple piece of string, an elementary mathematical background, and The Knot Book, anyone can start learning about some of the most advanced ideas in contemporary mathematics.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
Math Through the Ages: A Gentle History for Teachers and Others
William P. Berlinghoff - 2002
Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."
Men of Mathematics
Eric Temple Bell - 1937
Bell, a leading figure in mathematics in America for half a century. Men of Mathematics accessibly explains the major mathematics, from the geometry of the Greeks through Newton's calculus and on to the laws of probability, symbolic logic, and the fourth dimension. In addition, the book goes beyond pure mathematics to present a series of engrossing biographies of the great mathematicians -- an extraordinary number of whom lived bizarre or unusual lives. Finally, Men of Mathematics is also a history of ideas, tracing the majestic development of mathematical thought from ancient times to the twentieth century. This enduring work's clear, often humorous way of dealing with complex ideas makes it an ideal book for the non-mathematician.
Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry
George F. Simmons - 1981
. . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
What Is Mathematics?: An Elementary Approach to Ideas and Methods
Richard Courant - 1941
Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.
Uncle Petros and Goldbach's Conjecture: A Novel of Mathematical Obsession
Apostolos Doxiadis - 1992
His feverish and singular pursuit of this goal has come to define his life. Now an old man, he is looked on with suspicion and shame by his family-until his ambitious young nephew intervenes.Seeking to understand his uncle's mysterious mind, the narrator of this novel unravels his story, a dramatic tale set against a tableau of brilliant historical figures-among them G. H. Hardy, the self-taught Indian genius Srinivasa Ramanujan, and a young Kurt Gödel. Meanwhile, as Petros recounts his own life's work, a bond is formed between uncle and nephew, pulling each one deeper into mathematical obsession, and risking both of their sanity.
The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography
Simon Singh - 1999
From Mary, Queen of Scots, trapped by her own code, to the Navajo Code Talkers who helped the Allies win World War II, to the incredible (and incredibly simple) logisitical breakthrough that made Internet commerce secure, The Code Book tells the story of the most powerful intellectual weapon ever known: secrecy.Throughout the text are clear technical and mathematical explanations, and portraits of the remarkable personalities who wrote and broke the world’s most difficult codes. Accessible, compelling, and remarkably far-reaching, this book will forever alter your view of history and what drives it. It will also make you wonder how private that e-mail you just sent really is.
Everything and More: A Compact History of Infinity
David Foster Wallace - 2003
Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.
Elliptic Tales: Curves, Counting, and Number Theory
Avner Ash - 2012
The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.
Birth of a Theorem: A Mathematical Adventure
Cédric Villani - 2012
Birth of a Theorem is Villani’s own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career.But you don’t have to understand nonlinear Landau damping to love Birth of a Theorem. It doesn’t simplify or overexplain; rather, it invites readers into collaboration. Villani’s diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You’re privy to the dining-hall conversations at the world’s greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker’s whole life that propels discovery—and with Birth of a Theorem, Cédric Villani welcomes you into his.
Managerial Accounting: Tools for Business Decision Making
Jerry J. Weygandt - 1999
Aimed at accountants or readers of other career paths, this book helps them build their decision making skills and understand how to use accounting information to make quality business decisions.
Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century
Masha Gessen - 2009
A prize of one million dollars was offered to anyone who could unravel it, but Perelman declined the winnings, and in doing so inspired journalist Masha Gessen to tell his story. Drawing on interviews with Perelman’s teachers, classmates, coaches, teammates, and colleagues in Russia and the United States—and informed by her own background as a math whiz raised in Russia—Gessen uncovered a mind of unrivaled computational power, one that enabled Perelman to pursue mathematical concepts to their logical (sometimes distant) end. But she also discovered that this very strength turned out to be Perelman's undoing and the reason for his withdrawal, first from the world of mathematics and then, increasingly, from the world in general.
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.