How to Ace Calculus: The Streetwise Guide


Colin Conrad Adams - 1998
    Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.

Introducing Relativity: A Graphic Guide


Bruce Bassett - 2002
    Beginning near the speed of light and proceeding to explorations of space-time and curved spaces, "Introducing Relativity" plots a visually accessible course through the thought experiments that have given shape to contemporary physics. Scientists from Newton to Hawking add their unique contributions to this story, as we encounter Einstein's astounding vision of gravity as the curvature of space-time and arrive at the breathtakingly beautiful field equations. Einstein's legacy is reviewed in the most advanced frontiers of physics today - black holes, gravitational waves, the accelerating universe and string theory. This is a superlative, fascinating graphic account of Einstein's strange world and how his legacy has been built upon since.

Advanced Engineering Mathematics


Erwin Kreyszig - 1968
    The new edition provides invitations - not requirements - to use technology, as well as new conceptual problems, and new projects that focus on writing and working in teams.

Ordinary Differential Equations


Morris Tenenbaum - 1985
    Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Microbiology with Diseases by Body System


Robert W. Bauman - 2008
    

Thomas' Calculus, Early Transcendentals, Media Upgrade


George B. Thomas Jr. - 2002
    This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.

Fundamentals of Fluid Mechanics [With Free Access to Website Study Aids]


Bruce R. Munson - 2005
    In each new edition, the authors have refined their primary goal of helping you develop the skills and confidence you need to master the art of solving fluid mechanics problems. This new Fifth Edition includes many new problems, revised and updated examples, new Fluids in the News case study examples, new introductory material about computational fluid dynamics (CFD), and the availability of FlowLab for solving simple CFD problems. Access special resources online New copies of this text include access to resources on the book's website, including: * 80 short Fluids Mechanics Phenomena videos, which illustrate various aspects of real-world fluid mechanics.* Review Problems for additional practice, with answers so you can check your work.* 30 extended laboratory problems that involve actual experimental data for simple experiments. The data for these problems is provided in Excel format.* Computational Fluid Dynamics problems to be solved with FlowLab software. Student Solution Manual and Study Guide A Student Solution Manual and Study Guide is available for purchase, including essential points of the text, "Cautions" to alert you to common mistakes, 109 additional example problems with solutions, and complete solutions for the Review Problems.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Calculus


Michael Spivak - 1967
    His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.

Statistics for Psychology


Arthur Aron - 1993
    This approach constantly reminds students of the logic behind what they are learning, and each procedure is taught both verbally and numerically, which helps to emphasize the concepts. Thoroughly revised, with new content and many new practice examples, this text takes the reader from basic procedures through analysis of variance (ANOVA). Students cover statistics and also learn to read and inderstand research articles. - SPSS examplesincluded with each procedure - Dozens of examples updated (especially the in-the-research-literature ones) - Reorganization - The self-contained chapters on correlation and regression have been moved after t-test and analysis of variance - Emphasis on definitional formulas - As opposed to computational formulas - Practical, up-to-date excerpts - For each procedure, the text explains how results are described in research articles. example being described in each way - Interesting examples throughout - Often include studies of or by researchers of diverse ethnicities - Complete package of ancillary materials - A web page with additional practice problems and extensive interactive study materials, plus four mini chapters covering additional material not in the text, a very substantial test bank; an instructors' manual that provides sample syllabi, lecture outlines, and ready-to-copy (or download) power-point slides or transparencies with examples not in the book; and a very complete students' study guide that also provides a thorough workbook for using SPSS with this book.

Fundamentals of Statistical and Thermal Physics


Frederick Reif - 1965
    The presentation develops physical insight by stressing the microscopic content of the theory.

Differential Equations


Richard Bronson - 2010
    This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N

Calculus with Analytic Geometry


Earl W. Swokowski - 1979
    

Foundations in Microbiology


Kathleen Park Talaro - 1992
    It uses a taxonomic approach for the study of pathogens.