Book picks similar to
SAS Certification Prep Guide: Advanced Programming for SAS 9 by SAS Institute
programming
sas
statistics
nonfiction
Scorecasting: The Hidden Influences Behind How Sports Are Played and Games Are Won
Tobias J. Moskowitz - 2011
Jon Wertheim to overturn some of the most cherished truisms of sports, and reveal the hidden forces that shape how basketball, baseball, football, and hockey games are played, won and lost.Drawing from Moskowitz's original research, as well as studies from fellow economists such as bestselling author Richard Thaler, the authors look at: the influence home-field advantage has on the outcomes of games in all sports and why it exists; the surprising truth about the universally accepted axiom that defense wins championships; the subtle biases that umpires exhibit in calling balls and strikes in key situations; the unintended consequences of referees' tendencies in every sport to "swallow the whistle," and more.Among the insights that Scorecasting reveals:Why Tiger Woods is prone to the same mistake in high-pressure putting situations that you and I areWhy professional teams routinely overvalue draft picks The myth of momentum or the "hot hand" in sports, and why so many fans, coaches, and broadcasters fervently subscribe to itWhy NFL coaches rarely go for a first down on fourth-down situations--even when their reluctance to do so reduces their chances of winning.In an engaging narrative that takes us from the putting greens of Augusta to the grid iron of a small parochial high school in Arkansas, Scorecasting will forever change how you view the game, whatever your favorite sport might be.
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
Nathan Yau - 2011
Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Elementary Solid State Physics: Principles and Applications
M. Ali Omar - 1975
I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.
Lifehacked: How One Family from the Slums Made Millions Selling Apps
Allen Wong - 2012
He became a self-made millionaire before he was 25.But, life wasn't always this grand for him. He was the only person in his family earning an income. And, he came from an oppressed family that grew up in the slums. Regardless, the apps he published were downloaded by over 15 million people.His apps have been featured in many places, including Wired.com, NBC News, and CNN. Now he's sharing the story on how he did it, the crises he struggled with, and what his father taught him to be successful.App companies have paid him thousands of dollars for consultant work, and he has helped them increase their download numbers by over 1000%. One of those apps was downloaded by over 100,000 users in one day. And now he is revealing his marketing secrets for the first time in this book.Note: This book was written with non-technical people in mind. The book covers both life and entrepreneurial lessons, and not all of the book is about app development.
Moneyball: The Art of Winning an Unfair Game
Michael Lewis - 2003
Conventional wisdom long held that big name, highly athletic hitters and young pitchers with rocket arms were the ticket to success. But Beane and his staff, buoyed by massive amounts of carefully interpreted statistical data, believed that wins could be had by more affordable methods such as hitters with high on-base percentage and pitchers who get lots of ground outs. Given this information and a tight budget, Beane defied tradition and his own scouting department to build winning teams of young affordable players and inexpensive castoff veterans. Lewis was in the room with the A's top management as they spent the summer of 2002 adding and subtracting players and he provides outstanding play-by-play. In the June player draft, Beane acquired nearly every prospect he coveted (few of whom were coveted by other teams) and at the July trading deadline he engaged in a tense battle of nerves to acquire a lefty reliever. Besides being one of the most insider accounts ever written about baseball, Moneyball is populated with fascinating characters. We meet Jeremy Brown, an overweight college catcher who most teams project to be a 15th round draft pick (Beane takes him in the first). Sidearm pitcher Chad Bradford is plucked from the White Sox triple-A club to be a key set-up man and catcher Scott Hatteberg is rebuilt as a first baseman. But the most interesting character is Beane himself. A speedy athletic can't-miss prospect who somehow missed, Beane reinvents himself as a front-office guru, relying on players completely unlike, say, Billy Beane. Lewis, one of the top nonfiction writers of his era (Liar's Poker, The New New Thing), offers highly accessible explanations of baseball stats and his roadmap of Beane's economic approach makes Moneyball an appealing reading experience for business people and sports fans alike. --John Moe
Lean Analytics: Use Data to Build a Better Startup Faster
Alistair Croll - 2013
Lean Analytics steers you in the right direction.This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without.Understand Lean Startup, analytics fundamentals, and the data-driven mindsetLook at six sample business models and how they map to new ventures of all sizesFind the One Metric That Matters to youLearn how to draw a line in the sand, so you’ll know it’s time to move forwardApply Lean Analytics principles to large enterprises and established products
Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know
Alton Hardin - 2016
This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.
Probabilistic Robotics
Sebastian Thrun - 2005
Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak
Travis Sawchik - 2015
Pittsburghers joked their town was the city of champions…and the Pirates. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise's fortunes.Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the small-market Pirates played the game. For manager Clint Hurdle and the front office staff to save their jobs, they could not rely on a free agent spending spree, instead they had to improve the sum of their parts and find hidden value. They had to change. From Hurdle shedding his old-school ways to work closely with Neal Huntington, the forward-thinking data-driven GM and his team of talented analysts; to pitchers like A. J. Burnett and Gerrit Cole changing what and where they threw; to Russell Martin, the undervalued catcher whose expert use of the nearly-invisible skill of pitch framing helped the team's pitchers turn more balls into strikes; to Clint Barmes, a solid shortstop and one of the early adopters of the unconventional on-field shift which forced the entire infield to realign into positions they never stood in before. Under Hurdle's leadership, a culture of collaboration and creativity flourished as he successfully blended whiz kid analysts with graybeard coaches—a kind of symbiotic teamwork which was unique to the sport.Big Data Baseball is Moneyball on steroids. It is an entertaining and enlightening underdog story that uses the 2013 Pirates season as the perfect lens to examine the sport's burgeoning big-data movement. With the help of data-tracking systems like PitchF/X and TrackMan, the Pirates collected millions of data points on every pitch and ball in play to create a tome of color-coded reports that revealed groundbreaking insights for how to win more games without spending a dime. In the process, they discovered that most batters struggled to hit two-seam fastballs, that an aggressive defensive shift on the field could turn more batted balls into outs, and that a catcher's most valuable skill was hidden. All these data points which aren't immediately visible to players and spectators, are the bit of magic that led the Pirates to spin straw in to gold, finish the 2013 season in second place, end a twenty-year losing streak.
Women's Health Lift to Get Lean: A Beginner’s Guide to Fitness & Strength Training in 3 Simple Steps
Holly Perkins - 2015
Yet that message is still lost on many women who fear that weight lifting will make them bulky, turn their skin green, and give them Incredible Hulk muscles like their boyfriends'. Women have more options than step aerobics or running on a treadmill to shed pounds: They can weight-train in a very specific manner designed to make the most of a woman's unique physiology.Lift to Get Lean is the first beginner's guide to strength training from Women's Health that is written specifically for women by a woman. Holly Perkins is a certified strength and conditioning specialist (CSCS) who has been teaching the fat-burning secrets of weight training exclusively to women for more than 20 years. Perkins doesn't follow men's rules when it comes to building muscle. Her Lift to Get Lean delivers a three-step system: Technique, Movement Speed, and the Last 2 Reps Rule, which make all the difference in developing the kind of strong, lean, and sexy body women want. Perkins offers four different 90-day training programs that efficiently build functional strength along with leaner legs, stronger arms, and a sexier butt.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Statistics in a Nutshell: A Desktop Quick Reference
Sarah Boslaugh - 2008
This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors