Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

Epistemology: A Contemporary Introduction to the Theory of Knowledge


Robert Audi - 1997
    It aims to reach students who have already done an introductory philosophy course.Topics covered include perception and reflection as grounds of knowledge, and the nature, structure, and varieties of knowledge. The character and scope of knowledge in the crucial realms of ethics, science and religion are also considered.Unique features of Epistemology: * Provides a comprehensive survey of basic concepts and major theories* Gives an up-to-date account of important developments in the field* Contains many lucid examples to support ideas* Cites key literature in an annotated bibliography.

Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets


David Papineau - 2012
    Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.

The Logical Structure of the World and Pseudoproblems in Philosophy


Rudolf Carnap - 1928
    In The Logical Structure of the World, Carnap adopts the position of “methodological solipsism” and shows that it is possible to describe the world from the immediate data of experience. In his Pseudoproblems in Philosophy, he asserts that many philosophical problems are meaningless.

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

Dialogues on Mathematics


Alfréd Rényi - 1967
    

The Scientific Image


Bas C. Van Fraassen - 1980
    In this book van Fraassen develops an alternative to scientific realism by constructing and evaluating three mutually reinforcing theories.

The Great Philosophers (From Socrates to Foucault)


Jeremy Stangroom - 2005
    Each essay gives a biographical background for its subject and a description of the main strands of their thought, together with summaries of their major works.The thirty-four chronologically-organized essays are a comprehensive introduction to Western philosophy's major figures.Dr Jeremy Stangroom is a founding editor of The Philosophers' Magazine, one of the world's most popular philosophy publications. He has written and/or edited numerous books, including: New British Philosophy, What Philosophers Think and Great Thinkers A-Z (all with Julian Baggini); The Dictionary of Fashionable Nonsense and Why Truth Matters (with Ophelia Benson); and What Scientists Think. He is a frequent contributor to New Humanist magazine, and he is also the editor of the Royal Institute of Philosophy web site.James Garvey teaches philosophy at the University of Nottingham and is Secretary of the Royal Institute of Philosophy.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.

Algebra II For Dummies


Mary Jane Sterling - 2004
    To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Satan, Cantor, and Infinity and Other Mind-Boggling Puzzles


Raymond M. Smullyan - 1992
    The author of What Is the Name of This Book? presents a compilation of more than two hundred challenging new logic puzzles--ranging from simple brainteasers to complex mathematical paradoxes.

Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being


George Lakoff - 2000
    Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.

Ruler and Compass: Practical Geometric Constructions


Andrew Sutton - 2009
    Originally marked out by eye and later by use of a stretched cord, in time these forms came to be made with the simple tools of ruler and compass.This small book introduces the origins and basic principles of geometric constructions using these ancient tools, before going on to cover dozens of geometric forms, from practical fundamentals to more challenging constructions.

The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us


Noson S. Yanofsky - 2013
    This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.