Inorganic Chemistry


Catherine E. Housecroft - 2001
    It offers superior coverage of all key areas, including descriptive chemistry, MO theory, bonding, and physical inorganic chemistry. Chapter topics are presented in logical order and include: basic concepts; nuclear properties; an introduction to molecular symmetry; bonding in polyatomic molecules; structures and energetics of metallic and ionic solids; acids, bases, and ions in aqueous solution; reduction and oxidation; non-aqueous media; and hydrogen. Four special topic chapters, chosen for their currency and interest, conclude the book. For researchers seeking the latest information in the field of inorganic chemistry.

Advanced Inorganic Chemistry


F. Albert Cotton - 1972
    Like its predecessors, this updated Sixth Edition is organized around the periodic table of elements and provides a systematic treatment of the chemistry of all chemical elements and their compounds. It incorporates important recent developments with an emphasis on advances in the interpretation of structure, bonding, and reactivity.From the reviews of the Fifth Edition: "The first place to go when seeking general information about the chemistry of a particular element, especially when up-to-date, authoritative information is desired."--Journal of the American Chemical Society"Every student with a serious interest in inorganic chemistry should have [this book]."-- Journal of Chemical Education "A mine of information . . . an invaluable guide."-- Nature "The standard by which all other inorganic chemistry books are judged."-- Nouveau Journal de Chimie "A masterly overview of the chemistry of the elements."-- The Times of London Higher Education Supplement "A bonanza of information on important results and developments which could otherwise easily be overlooked in the general deluge of publications."-- Angewandte Chemie

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

Guidebook to Mechanism in Organic Chemistry


Peter Sykes - 1970
    This guidebook is aimed clearly at the needs of the student, with a thorough understanding of, and provision for, the potential conceptual difficulties he or she is likely to encounter.

Physical Chemistry


Ira N. Levine - 1978
    In this title, the treatment is made easy-to-follow by giving step-by-step derivations, explanations and by avoiding advanced mathematics unfamiliar to students. It covers: math and physics thorough review sections; and worked examples, followed by a practice exercise.

Principles of Instrumental Analysis


Douglas A. Skoog - 1971
    Emphasis is placed upon the theoretical basis of each type of instrument, its optimal area of application, its sensitivity, its precision, and its limitations. The text also introduces students to elementary integrated circuitry, microprocessors and computers, and treatment of analytical data.

Gödel's Proof


Ernest Nagel - 1958
    Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.

How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

Organic Chemistry II as a Second Language


David R. Klein - 2005
    It explores the critical concepts while also examining why they are relevant. The core content is presented within the framework of predicting products, proposing mechanisms, and solving synthesis problems. Readers will fine-tune the key skills involved in solving those types of problems with the help of interactive, step-by-step instructions and problems.

Semiconductor Device Fundamentals


Robert F. Pierret - 1995
    Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Discrete-Event System Simulation


Jerry Banks - 1983
    This text provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments. It offers an up-to-date treatment of simulation of manufacturing and material handling systems, computer systems, and computer networks. Students and instructors will find a variety of resources at the associated website, www.bcnn.net, including simulation source code for download, additional exercises and solutions, web links and errata.

Kuby Immunology


Judy A. Owen - 2012
    The new edition is thoroughly updated, including most notably a new chapter on innate immunity, a capstone chapter on immune responses in time and space, and many new focus boxes drawing attention to exciting clinical, evolutionary, or experimental connections that help bring the material to life.See what's in the LaunchPad

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering


Steven H. Strogatz - 1994
    The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.

A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton