Logic: An Introduction to Elementary Logic


Wilfrid Hodges - 1980
    From this starting point, and assuming no previous knowledge of logic, Wilfrid Hodges takes the reader through the whole gamut of logical expressions in a simple and lively way. Readers who are more mathematically adventurous will find optional sections introducing rather more challenging material. 'A lively and stimulating book' Philosophy

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

Pure Mathematics 1: Advanced Level Mathematics


Hugh Neill - 2002
    Pure Mathematics 1 corresponds to unit P1. It covers quadratics, functions, coordinate geometry, circular measure, trigonometry, vectors, series, differentiation and integration.

A Brief History of the Paradox: Philosophy and the Labyrinths of the Mind


Roy Sorensen - 2003
     Now Roy Sorensen offers the first narrative history of paradoxes, a fascinating and eye-opening account that extends from the ancient Greeks, through the Middle Ages, the Enlightenment, and into the twentieth century. When Augustine asked what God was doing before He made the world, he wastold: Preparing hell for people who ask questions like that. A Brief History of the Paradox takes a close look at questions like that and the philosophers who have asked them, beginning with the folk riddles that inspired Anaximander to erect the first metaphysical system and ending with suchthinkers as Lewis Carroll, Ludwig Wittgenstein, and W.V. Quine. Organized chronologically, the book is divided into twenty-four chapters, each of which pairs a philosopher with a major paradox, allowing for extended consideration and putting a human face on the strategies that have been taken towardthese puzzles. Readers get to follow the minds of Zeno, Socrates, Aquinas, Ockham, Pascal, Kant, Hegel, and many other major philosophers deep inside the tangles of paradox, looking for, and sometimes finding, a way out. Filled with illuminating anecdotes and vividly written, A Brief History of the Paradox will appeal to anyone who finds trying to answer unanswerable questions a paradoxically pleasant endeavor.

Wittgenstein


Anthony Kenny - 1973
    Widely praised for providing a lucid and historically informed account of Wittgenstein's core philosophical concerns.Demonstrates the continuity between Wittgenstein's early and later writings.Provides a persuasive argument for the unity of Wittgenstein's thought.Kenny also assesses Wittgenstein's influence in the latter part of the twentieth century.Inside:PrefaceAbbreviations in References to Works by WittgensteinBiographical Sketch of Wittgenstein's PhilosophyThe Legacy of Frege & RussellThe Criticism of PrincipiaThe Picture Theory of the PropositionThe Metaphysics of Logical AtomismThe Dismantling of Logical AtomismAnticipation, Intentionality & VerificationUnderstanding, Thinking & MeaningLanguage-GamesPrivate LanguagesOn Scepticism & CertaintyThe Continuity of Wittgenstein's PhilosophySuggestions for Further ReadingIndex

The Cambridge Companion to Wittgenstein


Hans D. Sluga - 1993
    This volume provides a comprehensible guide to his work by a wide range of experts who are actively engaged in new work on Wittgenstein. The essays, which are both expository and original, address central themes in his philosophy of mind, language, logic, and mathematics and clarify the connections among the different stages in the development of his work.

The Game Of Logic


Lewis Carroll - 1969
    Two books bound as one.

The Courtier and the Heretic: Leibniz, Spinoza & the Fate of God in the Modern World


Matthew Stewart - 2005
    a personal confession of its creator and a kind of involuntary and unperceived memoir.". Stewart affirms this maxim in his colorful reinterpretation of the lives and works of 17th-century philosophers Spinoza and Leibniz. In November 1676, the foppish courtier Leibniz, "the ultimate insider... an orthodox Lutheran from conservative Germany," journeyed to The Hague to visit the self-sufficient, freethinking Spinoza, "a double exile... an apostate Jew from licentious Holland." A prodigious polymath, Leibniz understood Spinoza's insight that "science was in the process of rendering the God of revelation obsolete; that it had already undermined the special place of the human individual in nature." Spinoza embraced this new world. Seeing the orthodox God as a "prop for theocratic tyranny," he articulated the basic theory for the modern secular state. Leibniz, on the other hand, spent the rest of his life championing God and theocracy like a defense lawyer defending a client he knows is guilty. He elaborated a metaphysics that was, at bottom, a reaction to Spinoza and collapses into Spinozism, as Stewart deftly shows. For Stewart, Leibniz's reaction to Spinoza and modernity set the tone for "the dominant form of modern philosophy"—a category that includes Kant, Hegel, Bergson, Heidegger and "the whole 'postmodern' project of deconstructing the phallogocentric tradition of western thought." Readers of philosophy may find much to disagree with in these arguments, but Stewart's wit and profluent prose make this book a fascinating read.

The Logic of Scientific Discovery


Karl Popper - 1934
    It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)

Probability, Statistics And Random Processes


T. Veerarajan - 2008
    

Naming and Necessity


Saul A. Kripke - 1980
    It redirected philosophical attention to neglected questions of natural and metaphysical necessity and to the connections between these and theories of reference, in particular of naming, and of identity. From a critique of the dominant tendency to assimilate names to descriptions and more generally to treat their reference as a function of their Fregean sense, surprisingly deep and widespread consequences may be drawn. The largely discredited distinction between accidental and essential properties, both of individual things (including people) and of kinds of things, is revived. So is a consequent view of science as what seeks out the essences of natural kinds. Traditional objections to such views are dealt with by sharpening distinctions between epistemic and metaphysical necessity; in particular by the startling admission of necessary a posteriori truths. From these, in particular from identity statements using rigid designators whether of things or of kinds, further remarkable consequences are drawn for the natures of things, of people, and of kinds; strong objections follow, for example to identity versions of materialism as a theory of the mind.This seminal work, to which today's thriving essentialist metaphysics largely owes its impetus, is here published with a substantial new Preface by the author.

Advanced Differential Equations


M.D. Raisinghania - 1995
    

Elements Of Discrete Mathematics: Solutions Manual


Chung Laung Liu - 1999
    

Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers


Joseph Mazur - 2014
    What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.

Language, Proof and Logic: Text and CD


Jon Barwise - 1999
    The unique on-line grading services instantly grades solutions to hundred of computer exercises. It is specially devised to be used by philosophy instructors in a way that is useful to undergraduates of philosophy, computer science, mathematics, and linguistics.The book is a completely rewritten and much improved version of The Language of First-order Logic. Introductory material is presented in a more systematic and accessible fashion. Advanced chapters include proofs of soundness and completeness for propositional and predicate logic, as well as an accessible sketch of Godel's first incompleteness theorem. The book is appropriate for a wide range of courses, from first logic courses for undergraduates (philosophy, mathematics, and computer science) to a first graduate logic course.The package includes four pieces of software:Tarski's World 5.0, a new version of the popular program that teaches the basic first-order language and its semantics; Fitch, a natural deduction proof environment for giving and checking first-order proofs;Boole, a program that facilitates the construction and checking of truth tables and related notions (tautology, tautological consequence, etc.);Submit, a program that allows students to submit exercises done with the above programs to the Grade Grinder, the automatic grading service.Grade reports are returned to the student and, if requested, to the student's instructor, eliminating the need for tedious checking of homework. All programs are available for Windows, Macintosh and Linux systems.Instructors do not need to use the programs themselves in order to be able to take advantage of their pedagogical value. More about the software can be found at lpl.stanford.edu.The price of a new text/software package includes one Registration ID, which must be used each time work is submitted to the grading service. Once activated, the Registration ID is not transferable.