Minecraft Redstone Handbook: Ultimate Guide to Redstone: Learn to Create Awesome Redstone Devices (Unofficial Minecraft Handbook)


BlockBoy - 2014
    Messing about with these circuits is a lot of fun and can be very rewarding. People have built amazingly complex electronic circuits using Redstone. However while every thing is easy to get into, to advance and understand some of the more complex circuits can be a little daunting for someone who does not have some background knowledge.This guide will remedy that. Through this guide you will be able to understand the ins and outs of Redstone circuits with the least amount of electronic mumbo jumbo. It is written with the average Minecraft gamer in mind, but includes advanced concepts and some helpful in game implementations like automated farms that will make the game play more fun.So whether you are just a casual player looking to make your first redstone circuit based arrow trap, or a hardcore techie aspiring to make a huge redstone based adder, we are certain you will find this guide a fun and informative companion through the long days spent designing redstone contraptions in the enchanting world of Minecraft. Scroll Up, Click "Buy Now" and Build Some Cool Redstone Devices!

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Machine Learning with R


Brett Lantz - 2014
    This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

iPad: The Missing Manual


J.D. Biersdorfer - 2010
    That’s where this full-color Missing Manual comes in. Learn how to stream HD video, make video calls, manage your email, surf the Web, listen to music, play games, and maybe even do a little iWork. This is the book that should have been in the box.Build your media library. Fill your iPad with music, movies, TV shows, eBooks, photos, and more.Share with others. Stream music, HD movies, TV shows, and more, to and from your iPad.Create your own media. Use the iPad’s new Photo Booth, iMovie, and GarageBand apps to express yourself.Get online. Connect through WiFi or Wi-Fi+3G, and surf with the iPad’s faster browser.Place video calls. See who’s talking with the iPad’s FaceTime app and its two cameras.Consolidate your email. Read and send messages from any of your accounts.Learn undocumented tips and tricks. Get the lowdown on cool iPad secrets and workarounds.

The Adobe Photoshop CS Book for Digital Photographers


Scott Kelby - 2003
    This book covers topics which include the secrets of how the pros retouch portraits; how to color correct any photo without breaking a sweat (you'll be amazed at how they do it!); how to unlock the power of Photoshop CS' new features for digital photo pros; and others.

Security Metrics: Replacing Fear, Uncertainty, and Doubt


Andrew Jaquith - 2007
    Using sample charts, graphics, case studies, and war stories, Yankee Group Security Expert Andrew Jaquith demonstrates exactly how to establish effective metrics based on your organization's unique requirements. You'll discover how to quantify hard-to-measure security activities, compile and analyze all relevant data, identify strengths and weaknesses, set cost-effective priorities for improvement, and craft compelling messages for senior management. Security Metrics successfully bridges management's quantitative viewpoint with the nuts-and-bolts approach typically taken by security professionals. It brings together expert solutions drawn from Jaquith's extensive consulting work in the software, aerospace, and financial services industries, including new metrics presented nowhere else. You'll learn how to: - Replace nonstop crisis response with a systematic approach to security improvement - Understand the differences between "good" and "bad" metrics - Measure coverage and control, vulnerability management, password quality, patch latency, benchmark scoring, and business-adjusted risk - Quantify the effectiveness of security acquisition, implementation, and other program activities - Organize, aggregate, and analyze your data to bring out key insights - Use visualization to understand and communicate security issues more clearly - Capture valuable data from firewalls and antivirus logs, third-party auditor reports, and other resources - Implement balanced scorecards that present compact, holistic views of organizational security effectiveness Whether you're an engineer or consultant responsible for security and reporting to management-or an executive who needs better information for decision-making-Security Metrics is the resource you have been searching for. Andrew Jaquith, program manager for Yankee Group's Security Solutions and Services Decision Service, advises enterprise clients on prioritizing and managing security resources. He also helps security vendors develop product, service, and go-to-market strategies for reaching enterprise customers. He co-founded @stake, Inc., a security consulting pioneer acquired by Symantec Corporation in 2004. His application security and metrics research has been featured in CIO, CSO, InformationWeek, IEEE Security and Privacy, and The Economist. Foreword Preface Acknowledgments About the Author Chapter 1 Introduction: Escaping the Hamster Wheel of Pain Chapter 2 Defining Security Metrics Chapter 3 Diagnosing Problems and Measuring Technical Security Chapter 4 Measuring Program Effectiveness Chapter 5 Analysis Techniques Chapter 6 Visualization Chapter 7 Automating Metrics Calculations Chapter 8 Designing Security Scorecards Index

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers


Rudra Pratap - 2005
    Its broad appeal lies in its interactive environment with hundreds of built-in functions for technical computation, graphics, and animation. In addition, it provides easy extensibility with its own high-level programming language. Enhanced by fun and appealing illustrations, Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers employs a casual, accessible writing style that shows users how to enjoy using MATLAB.

Bayesian Reasoning and Machine Learning


David Barber - 2012
    They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.

Computability and Logic


George S. Boolos - 1980
    Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a new and simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems.

Excel Formulas and Functions for Dummies


Ken Bluttman - 2005
    Targets beginning to intermediate Excel users seeking real-world examples of how they can use Excel's powerful built-in functions Shows readers how to use Excel functions in formulas to help them decide between buying and leasing a car, calculate mortgage costs, compute grades, evaluate investment performance, figure college expenses, and more Gives explanations and examples of real-world situations Provides an abbreviated discussion of an additional 200 functions Excel commands nearly 90 percent of the market for spreadsheet applications; although this book is written for Excel 2003, the functions described are in earlier versions as well

Modern Database Management


Jeffrey A. Hoffer - 1994
    Intended for professional development programs in introductory database management.

High Performance Python: Practical Performant Programming for Humans


Micha Gorelick - 2013
    Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation.How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more.Get a better grasp of NumPy, Cython, and profilersLearn how Python abstracts the underlying computer architectureUse profiling to find bottlenecks in CPU time and memory usageWrite efficient programs by choosing appropriate data structuresSpeed up matrix and vector computationsUse tools to compile Python down to machine codeManage multiple I/O and computational operations concurrentlyConvert multiprocessing code to run on local or remote clustersDeploy code faster using tools like Docker