Cassandra: The Definitive Guide


Eben Hewitt - 2010
    Cassandra: The Definitive Guide provides the technical details and practical examples you need to assess this database management system and put it to work in a production environment.Author Eben Hewitt demonstrates the advantages of Cassandra's nonrelational design, and pays special attention to data modeling. If you're a developer, DBA, application architect, or manager looking to solve a database scaling issue or future-proof your application, this guide shows you how to harness Cassandra's speed and flexibility.Understand the tenets of Cassandra's column-oriented structureLearn how to write, update, and read Cassandra dataDiscover how to add or remove nodes from the cluster as your application requiresExamine a working application that translates from a relational model to Cassandra's data modelUse examples for writing clients in Java, Python, and C#Use the JMX interface to monitor a cluster's usage, memory patterns, and moreTune memory settings, data storage, and caching for better performance

Python Programming for Beginners: An Introduction to the Python Computer Language and Computer Programming (Python, Python 3, Python Tutorial)


Jason Cannon - 2014
    There can be so much information available that you can't even decide where to start. Or worse, you start down the path of learning and quickly discover too many concepts, commands, and nuances that aren't explained. This kind of experience is frustrating and leaves you with more questions than answers.Python Programming for Beginners doesn't make any assumptions about your background or knowledge of Python or computer programming. You need no prior knowledge to benefit from this book. You will be guided step by step using a logical and systematic approach. As new concepts, commands, or jargon are encountered they are explained in plain language, making it easy for anyone to understand. Here is what you will learn by reading Python Programming for Beginners: When to use Python 2 and when to use Python 3. How to install Python on Windows, Mac, and Linux. Screenshots included. How to prepare your computer for programming in Python. The various ways to run a Python program on Windows, Mac, and Linux. Suggested text editors and integrated development environments to use when coding in Python. How to work with various data types including strings, lists, tuples, dictionaries, booleans, and more. What variables are and when to use them. How to perform mathematical operations using Python. How to capture input from a user. Ways to control the flow of your programs. The importance of white space in Python. How to organize your Python programs -- Learn what goes where. What modules are, when you should use them, and how to create your own. How to define and use functions. Important built-in Python functions that you'll use often. How to read from and write to files. The difference between binary and text files. Various ways of getting help and find Python documentation. Much more... Every single code example in the book is available to download, providing you with all the Python code you need at your fingertips! Scroll up, click the Buy Now With 1 Click button and get started learning Python today!

SQL (Visual QuickStart Guide)


Chris Fehily - 2002
    With SQL and this task-based guide to it, you can do it too—no programming experience required!After going over the relational database model and SQL syntax in the first few chapters, veteran author Chris Fehily launches into the tasks that will get you comfortable with SQL fast. In addition to explaining SQL basics, this updated reference covers the ANSI SQL:2003 standard and contains a wealth of brand-new information, including a new chapter on set operations and common tasks, well-placed optimization tips to make your queries run fast, sidebars on advanced topics, and added IBM DB2 coverage.Best of all, the book's examples were tested on the latest versions of Microsoft Access, Microsoft SQL Server, Oracle, IBM DB2, MySQL, and PostgreSQL. On the companion Web site, you can download the SQL scripts and sample database for all these systems and put your knowledge to work immediately on a real database..

Dataclysm: Who We Are (When We Think No One's Looking)


Christian Rudder - 2014
    In Dataclysm, Christian Rudder uses it to show us who we truly are.   For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers.   In this daring and original book, Rudder explains how Facebook "likes" can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible.   Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.

Multiple View Geometry in Computer Vision


Richard Hartley - 2000
    This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

Calling Bullshit: The Art of Skepticism in a Data-Driven World


Carl T. Bergstrom - 2020
    Now, two science professors give us the tools to dismantle misinformation and think clearly in a world of fake news and bad data.It's increasingly difficult to know what's true. Misinformation, disinformation, and fake news abound. Our media environment has become hyperpartisan. Science is conducted by press release. Startup culture elevates bullshit to high art. We are fairly well equipped to spot the sort of old-school bullshit that is based in fancy rhetoric and weasel words, but most of us don't feel qualified to challenge the avalanche of new-school bullshit presented in the language of math, science, or statistics. In Calling Bullshit, Professors Carl Bergstrom and Jevin West give us a set of powerful tools to cut through the most intimidating data.You don't need a lot of technical expertise to call out problems with data. Are the numbers or results too good or too dramatic to be true? Is the claim comparing like with like? Is it confirming your personal bias? Drawing on a deep well of expertise in statistics and computational biology, Bergstrom and West exuberantly unpack examples of selection bias and muddled data visualization, distinguish between correlation and causation, and examine the susceptibility of science to modern bullshit.We have always needed people who call bullshit when necessary, whether within a circle of friends, a community of scholars, or the citizenry of a nation. Now that bullshit has evolved, we need to relearn the art of skepticism.

Artificial Intelligence


Patrick Henry Winston - 1977
    From the book, you learn why the field is important, both as a branch of engineering and as a science. If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published. Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth

Discrete-Event System Simulation


Jerry Banks - 1983
    This text provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments. It offers an up-to-date treatment of simulation of manufacturing and material handling systems, computer systems, and computer networks. Students and instructors will find a variety of resources at the associated website, www.bcnn.net, including simulation source code for download, additional exercises and solutions, web links and errata.

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

Multivariate Data Analysis


Joseph F. Hair Jr. - 1979
    This book provides an applications-oriented introduction to multivariate data analysis for the non-statistician, by focusing on the fundamental concepts that affect the use of specific techniques.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

Database Internals: A deep-dive into how distributed data systems work


Alex Petrov - 2019
    But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals.Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed.This book examines:Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable log structured storage engines, with differences and use-cases for eachDistributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns, from UDP to reliable consensus protocolsDatabase clusters: Discover how to achieve consistent models for replicated data

The Elements of Computing Systems: Building a Modern Computer from First Principles


Noam Nisan - 2005
    The books also provides a companion web site that provides the toold and materials necessary to build the hardware and software.