Book picks similar to
Latex for Everyone by Jane Hahn


computers
long-ago
mathematics
software

Kindle Fire For Dummies


Nancy C. Muir - 2011
    It walks you through all the tablet's features, shows you how to set up the device, navigate the touchscreen interface, buy music, stream video, download apps, and read e-books from Amazon.com. The book demystifies this all-new tablet and provides a handy reference that can be conveniently downloaded and read right on your Kindle Fire device.Looks at the new Kindle Fire, which features revolutionary technology and access to cool new services; this e-book explains both in plain English Is only available in e-book format and downloads directly to the Kindle Fire and other Kindle devices, making it a handy reference you can take virtually anywhere Covers not only the basics, but also tips and tricks for taking full advantage of the Kindle Fire and the services of Amazon's online stores Kindle Fire For Dummies is packed with powerful tips designed to help you get more punch out of your Kindle Fire tablet.

How You Play the Game: A Philosopher Plays Minecraft (Kindle Single)


Charlie Huenemann - 2015
    At a glance, it bears few similarities to any place we know and inhabit. But upon closer examination, the differences between this complex virtual reality and our own might not be as vast as we think. In “How You Play the Game,” author and philosopher Charlie Huenemann looks philosophically at the game of Minecraft (“What is the point of this game? How does one win? Well, this depends on what you want to do”) and grapples with the ethical conundrums, existential crises and moral responsibilities of the virtual realm. From the Overworld to the Ender Dragon, Huenemann offers an entertaining, insightful and often hilarious examination of Minecraft and the strange worlds—both virtual and not—surrounding it.Charlie Huenemann is a Professor of Philosophy at Utah State University. He writes for 3quarksdaily, and has published several books on the history of philosophy.Cover design by Adil Dara.

Game Development Essentials: An Introduction


Jeannie Novak - 2004
    This book not only examines content creation and the concepts behind development, but it also give readers a background on the evolution of game development and how it has become what it is today. GAME DEVELOPMENT ESSENTIALS also includes chapters on project management, development team roles and responsibilities, development cycle, marketing, maintenance, and the future of game development. With the same engaging writing style and examples that made the first two editions so popular, this new edition features all the latest games and game technology. Coverage of new game-related technology, development techniques, and the latest research in the field make this an invaluable resource for anyone entering the exciting, competitive, ever-changing world of game development.

Think Complexity: Complexity Science and Computational Modeling


Allen B. Downey - 2009
    Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers

Coding the Matrix: Linear Algebra through Computer Science Applications


Philip N. Klein - 2013
    Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program"

Physics for Game Developers


David M. Bourg - 2001
    Missile trajectories. Cornering dynamics in speeding cars. By applying the laws of physics, you can realistically model nearly everything in games that bounces around, flies, rolls, slides, or isn't sitting still, to create compelling, believable content for computer games, simulations, and animation. "Physics for Game Developers" serves as the starting point for those who want to enrich games with physics-based realism.Part one is a mechanics primer that reviews basic concepts and addresses aspects of rigid body dynamics, including kinematics, force, and kinetics. Part two applies these concepts to specific real-world problems, such as projectiles, boats, airplanes, and cars. Part three introduces real-time simulations and shows how they apply to computer games. Many specific game elements stand to benefit from the use of real physics, including: The trajectory of rockets and missiles, including the effects of fuel burn offThe collision of objects such as billiard ballsThe stability of cars racing around tight curvesThe dynamics of boats and other waterborne vehiclesThe flight path of a baseball after being struck by a batThe flight characteristics of airplanesYou don't need to be a physics expert to learn from "Physics for Game Developers, " but the author does assume you know basic college-level classical physics. You should also be proficient in trigonometry, vector and matrix math (reference formulas and identities are included in the appendixes), and college-level calculus, including integration and differentiation of explicit functions. Although the thrust of the book involves physics principles and algorithms, it should be noted that the examples are written in standard C and use Windows API functions.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

Riverworld : The Great Short Fiction of Philip José Farmer


Philip José Farmer - 1987
    

Python Algorithms: Mastering Basic Algorithms in the Python Language


Magnus Lie Hetland - 2010
    Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.

The REST API Design Handbook


George Reese - 2012
    The RESTful approach to web services design is rapidly become the approach of choice. Unfortunately, too few people have truly solid REST API design skills, and discussions of REST can become bogged down in dry theory.The REST API Design Handbook is a simple, practical guide to aid software engineers and software architects create lasting, scalable APIs based on REST architectural principles. The book provides a sound foundation in discussing the constraints that define a REST API. It quickly goes beyond that into the practical aspects of implementing such an API in the real world.Written by cloud computing expert George Reese, The REST API Design Handbook reflects hands on work in consuming many different third party APIs as well the development of REST-based web services APIs. It addresses all of the debates the commonly arise while creating these APIs. Subjects covered include:* REST architectural constraints* Using HTTP methods and response codes in an API* Authenticating RESTful API calls* Versioning* Asynchronous Operations* Pagination and Streaming* Polling and Push Notifications* Rate Limiting

How to Solve It: Modern Heuristics


Zbigniew Michalewicz - 2004
    Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.

Cryptography Engineering: Design Principles and Practical Applications


Niels Ferguson - 2010
    Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.

A Discipline of Programming


Edsger W. Dijkstra - 1976
    

Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.