Book picks similar to
An Outline of Set Theory by James M. Henle
mathematics
core_study_mathem<br/>atics
l_m_c
logics
Engineering Economy
William G. Sullivan - 1999
Sullivan Elin M. Wicks C. Patrick Koelling A succinct job description for an engineer consists of just two words: problem solver. Broadly speaking, engineers use knowledge to find new ways of doing things economically. Engineering design solutions do not exist in a vacuum, but within the context of a business opportunity. Truly, every problem has multiple solutions, so the question is, “How does one rationally select the design solution with the most favorable economic result?” The answer to this question can also be put forth in two words: engineering economy. This field of engineering provides a systematic framework for evaluating the economic aspects of competing design solutions. Just as engineers model the stress on a support column or the thermodynamic properties of a steam turbine, they must also model the economic impact of their engineering recommendations. Engineering economy is the subject of this textbook. Highlights of Engineering Economy, Fourteenth Edition: × Fifty percent of end-of-chapter problems are new or revised. × A bank of algorithmically generated test questions is available to adopting instructors. × Fundamentals of Engineering (FE) exam-style questions are included among the end-of-chapter problem sets. × Spreadsheet models are integratedthroughout. × An appendix on the basics of accounting is included in Chapter 2. × Chapter 3 on Cost Estimation appears early in the book. × An appendix on techniques for using Excel in engineering economy is available for reference. × Numerous comprehensive examples and case studies appear throughout the book. × Extended learning exercises appear in most chapters. × Personal finance problems are featured in most chapters. × Many pointers to relevant Web sites are provided. ISBN-13: 978-0-13-614297-3 ISBN-10: 0-13-614297-4
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
How to Think About Analysis
Lara Alcock - 2014
It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
Calculus Made Easy
Silvanus Phillips Thompson - 1910
With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry
George F. Simmons - 1981
. . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Extra Innings: More Baseball Between the Numbers from the Team at Baseball Prospectus
Baseball Prospectus - 2012
Sixteen years later, the Baseball Prospectus annual regularly hits best-seller lists and has become an indispensable guide for the serious fan. In Extra Innings, the team at Baseball Prospectus integrates statistics, interviews, and analysis to deliver twenty arguments about today’s game. In the tradition of their seminal book, Baseball Between the Numbers, they take on everything from steroids to the amateur draft. They probe the impact of managers on the game. They explain the critical art of building a bullpen. In an era when statistics matter more than ever, Extra Innings is an essential volume for every baseball fan.
The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics
Karl Sabbagh - 2002
They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
White King and Red Queen: How the Cold War Was Fought on the Chessboard
Daniel Johnson - 2008
An essential pastime of Russian intellectuals and revolutionaries, and later adopted by the Communists as a symbol of Soviet power, chess was inextricably linked to the rise and fall of the “evil empire.” This original narrative history recounts in gripping detail the singular part the Immortal Game played in the Cold War. From chess’s role in the Russian Revolution -- Marx, Lenin, and Trotsky were all avid players -- to the 1945 radio match when the Soviets crushed the Americans, prompting Stalin’s telegram “Well done lads!”; to the epic contest between Bobby Fischer and Boris Spassky in 1972 at the height of détente, when Kissinger told Fischer to “go over there and beat the Russians”; to the collapse of the Soviet Union itself, White King and Red Queen takes us on a fascinating tour of the Cold War’s checkered landscape.
Codebreakers' Victory: How the Allied Cryptographers Won World War II
Hervie Haufler - 2003
From the Purple Machine to the Navajo Talkers to the breaking of Japan's JN-25 Naval Code to the shadowy world of decoding units like Hut-8 in Bletchley Park, he shows how crucial information-often obtained by surreptitious and violent means-was the decisive edge in the Battle of Britain, at Midway and against the U-Boats in the North Atlantic, and how Allied intelligence saved the Soviet Union from almost certain defeat. In an accessible account based on years of research, interviews and exclusive access to previously top-secret archives, Haufler demonstrates how cryptography enabled Nimitz and MacArthur to persevere in the Pacific and helped Eisenhower and Patton mount the assaults on Normandy. In compelling detail, Haufler shows us how it was done-as only one who was on the frontlines of the "secret war" could tell it.
The Indisputable Existence of Santa Claus: The Mathematics of Christmas
Hannah Fry - 2016
And proves once and for all that maths isn't just for old men with white hair and beards who associate with elves.Maths has never been merrier.
Facts and Mysteries in Elementary Particle Physics
Martinus Veltman - 2003
We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the elusive Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed “superbly lucid” by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
Shing-Tung Yau - 2019
“An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin,
Boston Globe
“Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.
The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life
Alex Bellos - 2014
He sifts through over 30,000 survey submissions to uncover the world’s favourite number, and meets a mathematician who looks for universes in his garage. He attends the World Mathematical Congress in India, and visits the engineer who designed the first roller-coaster loop. Get hooked on math as Alex delves deep into humankind’s turbulent relationship with numbers, and reveals how they have shaped the world we live in.