Overdrive: Bill Gates and the Race to Control Cyberspace


James Wallace - 1997
    James Wallace brings readers up to date on the Gates saga to 1997 and reveals the inside story of the struggle to keep Microsoft on top in the World Wide Web game.

Alice in Quantumland: An Allegory of Quantum Physics


Robert Gilmore - 1994
    Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.

Differential Equations


Richard Bronson - 2010
    This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N

Thing Explainer: Complicated Stuff in Simple Words


Randall Munroe - 2015
    Explore computer buildings (datacenters), the flat rocks we live on (tectonic plates), the things you use to steer a plane (airliner cockpit controls), and the little bags of water you're made of (cells).

Skunk Works: A Personal Memoir of My Years at Lockheed


Ben R. Rich - 1994
    As recounted by Ben Rich, the operation's brilliant boss for nearly two decades, the chronicle of Lockheed's legendary Skunk Works is a drama of cold war confrontations and Gulf War air combat, of extraordinary feats of engineering & achievement against fantastic odds. Here are up-close portraits of the maverick band of scientists & engineers who made the Skunk Works so renowned. Filled with telling personal anecdotes & high adventure, with narratives from the CIA & from Air Force pilots who flew the many classified, risky missions, this book is a portrait of the most spectacular aviation triumphs of the 20th century.

Alfred's Essentials of Music Theory Complete Self Study Guide: A Complete Self-study Course for All Musicians (With CD)


Andrew Surmani - 2004
    Will take 25-35 days

Ask a Science Teacher: Stuff You Always Wanted to Know about How the World Works, But Didn T Know Who to Ask


Larry Scheckel - 2011
    Who has not wondered about how the human body works? Can a person drink too much water? How does gravity make things fall? From topics as varied as the Earth and atoms to sports and music, we all carry with us those questions we've always wanted answered but never knew whom to ask.Mysteries lurk in our bodies, our houses, the outdoors, in the sky above us, and the universe beyond us. Now, award-winning high school science teacher Larry Scheckel tackles 250 questions that help us to more clearly understand all of these mysteries. Scheckel perfected the art of explaining science topics not only as a science teacher for more than 38 years in his native Wisconsin, but also through writing a weekly column in his local paper, the "Tomah Journal," in which each week he'd field a question like those that are collected in this book.

Soonish: Ten Emerging Technologies That'll Improve and/or Ruin Everything


Kelly Weinersmith - 2017
    By weaving together their own research, interviews with pioneering scientists and Zach's trademark comics, the Weinersmiths investigate why these innovations are needed, how they would work, and what is standing in their way.

The Making of the Atomic Bomb


Richard Rhodes - 1986
    From the theoretical discussions of nuclear energy to the bright glare of Trinity there was a span of hardly more than twenty-five years. What began as merely an interesting speculative problem in physics grew into the Manhattan Project, and then into the Bomb with frightening rapidity, while scientists known only to their peers -- Szilard, Teller, Oppenheimer, Bohr, Meitner, Fermi, Lawrence, and yon Neumann -- stepped from their ivory towers into the limelight.Richard Rhodes takes us on that journey step by step, minute by minute, and gives us the definitive story of man's most awesome discovery and invention.

Microwave Engineering


David M. Pozar - 1990
    The author successfully introduces Maxwell's equations, wave propagation, network analysis, and design principles as applied to modern microwave engineering. A considerable amount of material in this book is related to the design of specific microwave circuits and components, for both practical and motivational value. It also presents the analysis and logic behind these designs so that the reader can see and understand the process of applying the fundamental concepts to arrive at useful results. The derivations are well laid out and the majority of each chapter's formulas are displayed in a nice tabular format every few pages. This Third Edition offers greatly expanded coverage with new material on: Noise; Nonlinear effects; RF MEMs; transistor power amplifiers; FET mixers; oscillator phase noise; transistor oscillators and frequency multiplier.

Fluid Mechanics


Pijush K. Kundu - 1990
    New to this third edition are expanded coverage of such important topics as surface boundary interfaces, improved discussions of such physical and mathematical laws as the Law of Biot and Savart and the Euler Momentum Integral. A very important new section on Computational Fluid Dynamics has been added for the very first time to this edition. Expanded and improved end-of-chapter problems will facilitate the teaching experience for students and instrutors alike. This book remains one of the most comprehensive and useful texts on fluid mechanics available today, with applications going from engineering to geophysics, and beyond to biology and general science. * Ample, useful end-of-chapter problems.* Excellent Coverage of Computational Fluid Dynamics.* Coverage of Turbulent Flows.* Solutions Manual available.

SUNBURST and LUMINARY - An Apollo Memoir


Don Eyles - 2018
    His assignment is to program the complex lunar landing phase in the Lunar Module's onboard computer. As he masters his art the reader learns about the computer, the mission, and a bit about spacecraft navigation and meets a cast of interesting characters along the way. As Apollo 11 approaches, the author flies lunar landings in simulators and meets the astronauts who will fly the LM for real. He explains the computer alarms that almost prevented Neil Armstrong from landing and describes a narrow escape from another dangerous problem. He helps Pete Conrad achieve a pinpoint landing on Apollo 12, and works with Apollo 16 commander John Young on a technique for landing even more precisely. On Apollo 14 he devises a workaround when a faulty pushbutton threatens Alan Shepard's mission, earning a NASA award, a story in Rolling Stone, and a few lines in the history books. Along the way the author hits the high points of his eclectic personal life, as he enters adulthood in the 1960s. He writes for students of the Apollo project, for whom the development of the flight software is still largely unexplored territory, but also for the young coders of the current digital culture, who will get the author's observations on the art of programming and who may identify as he explores sex, drugs, and the other excitements of the era. The underlying thesis is that the American space program in the 1960s was successful not in spite of, but in large measure because of the idealism, the freedom of thought, and the sense of exploration, inner and outer, that prevailed in the culture during that period. The memoir concludes in a party atmosphere at the spectacular night launch of Apollo 17 before a glittery crowd an occasion that marked the high water mark, so far, of human space exploration.

The Information: A History, a Theory, a Flood


James Gleick - 2011
    The story of information begins in a time profoundly unlike our own, when every thought and utterance vanishes as soon as it is born. From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. He provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself. And then the information age arrives. Citizens of this world become experts willy-nilly: aficionados of bits and bytes. And we sometimes feel we are drowning, swept by a deluge of signs and signals, news and images, blogs and tweets. The Information is the story of how we got here and where we are heading.

Reluctant Genius: The Passionate Life and Inventive Mind of Alexander Graham Bell


Charlotte Gray - 2006
    Who knew that he also was a pivotal figure in the development of the airplane, the hydrofoil, genetic engineering, and more? Charlotte Gray does, and she tells us how and why she brought to life the passionate mind and heart of the man behind so many amazing ideas and innovations. --Lauren Nemroff Some Questions for Charlotte Gray [image] 1. Most people picture Alexander Graham Bell as that grandfatherly looking man with a long white beard who invented the telephone. What's wrong with that image? The image of Alexander Graham Bell as a kindly Santa Claus figure is the one we all know: It is as familiar as the one of Einstein with his hair in a frizzy grey mass. But when Alexander Graham Bell was struggling to invent the telephone, he was a skinny, clean-shaven, neurotically intense young man and a hypochondriac, with obsessive work habits and a very volatile nature. Reading his letters and journals, I was shocked to discover how often he would ricochet between euphoria and depression. Invention was Alexander Graham Bell's passion, but I frequently wondered whether, if he had not had an early success and the right wife, his difficult personality would have prevented him achieving anything. I think it is important to revise the grandfatherly stereotype of Bell in order to show that invention is difficult, and inventors are not easy, placid people to live with. 2. In what way does Bell's genius different from other inventors of his age, such as Thomas Edison or the Wright brothers? The wonderful thing about the inventions of such nineteenth century giants as Bell, Edison and the Wright brothers is that, with a little bit of effort, even those of us who never did Grade 12 physics can actually understand how their inventions worked. One could never say that about today's microelectronic technology. Intuition and imagination were all crucial for the breakthroughs made by Edison, the Wright brothers and Bell. However, what sets Bell apart from Edison and the Wright brothers was that he didn't have an entrepreneurial bone in his body. He was more like a holdover from the eighteenth century Enlightenment, while the others were go-getting twentieth-century hustlers. Edison was always looking for financial backers; he announced his breakthroughs before he had even built working prototypes; he was one of the first inventors to put together a real R and D team at a purpose-built laboratory, at Menlo Park. He understood that invention is, in his own words, "One percent inspiration, ninety percent perspiration." Similarly the Wright Brothers were eager to make money out of their flying machines. They refused to share their technological breakthroughs, guarded their patents fiercely, and wouldn't give any demonstrations to the public of their biplanes. Bell was the opposite--totally absorbed in extending the frontiers of knowledge, and completely careless about commercial exploitation of his ideas. 3. Is it true that "necessity is the mother of invention" or is it something else? Invention has many mothers - the right materials, a widespread understanding that this will improve the world in some way, the right individual to pursue the elusive dream. In the case of the telephone, one can argue that there was no overwhelming necessity for a new form of communication: the telegraph had been working well for 30 years, and only a few people realized that a device that could carry the human voice, rather than the Morse code, would pull people together in a revolutionary way. As soon as telephones appeared in the market, their advantages were obvious. But there was still incredible resistance. In Britain, the upper classes were slow to acquire telephones because they posed a class issue: who should answer them? Everybody knew that, in a house with servants, the servant answered the door when the telegraph boy rang the bell. But should master or servant speak on the phone? The democratic nature of the telephone--anybody could use it, not just qualified operators--also shackled its spread. In Russia after the revolution, Stalin is said to have vetoed the idea of a modern telephone system. "It will unmake our work," the dictator decreed. "No greater instrument for counter-revolution and conspiracy can be imagined." So did necessity drive the invention of the telephone? No--when Bell first started speculating on its impact, people thought he was mad. But it quickly became a total necessity…imagine life without electronic communication today! 4. It was amazing to learn that Bell's mother and his wife were both deaf, and that from an early age he was immersed in research on the nature of sound and oral communication. How important were these personal relationships in shaping his outlook and inventions? One of my greatest surprises when I started research for Reluctant Genius was the discovery that Bell's first ambition was to be a teacher of the deaf, and that he remained committed to the cause of improved education for the hearing impaired throughout his life. I had no idea of this side of him, or of his long relationship with Helen Keller. The fact that the two most important women in his life, his mother and his wife, were deaf was of crucial importance both to his own work, and to his attitude to others. His respect for their intelligences and personalities meant that, unlike many of his contemporaries, he never assumed that deafness was linked to intellectual disability. Moreover, his scientific interest in their condition informed his telephone research. Because he knew why their ears didn't work, he understood how sound should reach the brain in a hearing person's ear, through the ear drum. None of his competitors made that intuitive leap. Their early attempts to build working telephones were foiled because they didn't include the diaphragm that mimicked the action of the ear drum, and which was the key feature of Bell's first phone. Lastly, Bell was also fascinated by the intergenerational transmission of deafness. This led to his research on genetics in general - and the program he initiated at his summer home, in Cape Breton, to breed a flock of "super sheep" that would always have twin births. 5. Bell's wife, Mabel Hubbard Bell, was a remarkable person in her own right. Why was it so important to tell her story? Too often, biographies of "Great Men" suggest they achieved everything by their own efforts. A few did, of course, but most depended on the support and encouragement of others--parents, partners, associates--to provide the right environment in which they could achieve their goals. Behind every great man….This was the case with Alexander Graham Bell. He would always have had his "Eureka Moment", in the summer of 1874, when he realized how a "talking telegraph" might work. But without Mabel, we probably would never have heard of him. He would not have patented the invention or found the business partners who helped him moved his invention from the laboratory to the market place. Mabel's father, Gardiner Hubbard, was his patent lawyer: Mabel herself ensured that he went to the Philadelphia Exposition, in 1876, to demonstrate his new apparatus. In later years, Mabel provided all kinds of other practical help, in ensuring that her exasperating husband could focus on his inventions. She handled the financial side of their marriage: she found qualified young men who could help him work on his flying machines: she was always cheering him up and stroking his ego when he got depressed. And she created, along with their two daughters, a warm family environment which gave balance to Bell's life - and which so many of his contemporaries, including Thomas Edison, never enjoyed. I was determined to give Mabel her due in the story of Bell. I found her such an attractive and intriguing figure. She was stone deaf, ten years younger than her husband, and their relationship began as a teacher-student one. It would be easy to assume that this brilliant, world famous man would be the dominant figure in the relationship. In fact, the reverse is true. 6. What do you think Bell would think of cell phones, the internet and other wireless means of communication? Bell himself anticipated "electric communication": he was very frustrated by how long it took for a letter from Nova Scotia to reach Europe. I'm sure he would be delighted by the internet. However, he would be appalled by the constant buzz of other technological advances, and the way we've allowed them to trump all other forms of human intercourse. This is a man who wouldn't have a telephone in his own study, because its ring would disturb his train of thought. He was a gracious, well-mannered man who would have been horrified by the way many of us let our cell phones to interrupt our face-to-face conversations. And if somebody pulled out a Blackberry and started punching into it while Bell was speaking of him--well, Alec would have muttered, "Shee-e-esh" (the nearest he ever got to swearing) and stomped out of the room. 7. What was the most exciting research discovery that you made? As a biographer, I have to say that my most exciting discovery was the wealth of material I had to work with. Because Alexander Graham Bell could never speak to his wife on the telephone, he and Mabel exchanged long, intimate, colourful letters whenever they were apart--and that was often. I was thrilled to discover, at the Alexander Graham Bell Historic Site in Baddeck, Nova Scotia, 180 three-ring binders of family correspondence (another set is housed at the Library of Congress, Washington.) These letters let me explore the inner-workings of the mind of a genius, and of a remarkable marriage, in a way that I had hardly dared hope for. I was also amazed at the range of Bell's activities. The telephone, the photophone (which sent sounds down beams of light), an early iron lung, a desalination process for salt water, flying machines, hydrofoils, genetic experiments…his scientific interests were enormously varied. And at the same time, he was doing so much else, for example with the Smithsonian Institute, and the National Geographic Society. And throughout his career, there was his long-running commitment to deaf education. It was hard not to be overwhelmed! 8. What are you working on right now? Yes, I'm already launched on my next biography. (In fact, I find it very hard not to start my next book before the previous one is even in the stores--I have a psychological need to live both my own life and someone else's!) My next project is a short biography of Nellie McClung, the Canadian author and political activist.

Structures: Or Why Things Don't Fall Down


J.E. Gordon - 1978
    Gordon strips engineering of its confusing technical terms, communicating its founding principles in accessible, witty prose.For anyone who has ever wondered why suspension bridges don't collapse under eight lanes of traffic, how dams hold back--or give way under--thousands of gallons of water, or what principles guide the design of a skyscraper, a bias-cut dress, or a kangaroo, this book will ease your anxiety and answer your questions.Structures: Or Why Things Don't Fall Down is an informal explanation of the basic forces that hold together the ordinary and essential things of this world--from buildings and bodies to flying aircraft and eggshells. In a style that combines wit, a masterful command of his subject, and an encyclopedic range of reference, Gordon includes such chapters as "How to Design a Worm" and "The Advantage of Being a Beam," offering humorous insights in human and natural creation.Architects and engineers will appreciate the clear and cogent explanations of the concepts of stress, shear, torsion, fracture, and compression. If you're building a house, a sailboat, or a catapult, here is a handy tool for understanding the mechanics of joinery, floors, ceilings, hulls, masts--or flying buttresses.Without jargon or oversimplification, Structures opens up the marvels of technology to anyone interested in the foundations of our everyday lives.