Book picks similar to
Language, Truth and Logic in Mathematics by Jaakko Hintikka
mathematics
lógica
it-wikipedia
logic
Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry
George F. Simmons - 1981
. . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
Quantum Physics Made Easy: The Introduction Guide For Beginners Who Flunked Maths And Science In Plain Simple English
Donald B. Grey - 2019
99.99% of the world’s mysteries are yet to be discovered and/or solved.
Why not…
It’s time for you to rediscover science?
One of the most compelling draws of the sciences for many people is the potential of discovering something that was not known before. Whether someone’s doing it for fame, for fortune, or just for the fun of it, discovering something new, leaving your own personal mark for the rest of humanity’s time in the universe, is a tempting prospect for many.
How would you feel about naming a star, and for others to know that you named it? That star would be visible in the sky for the rest of your lifetime, and more than likely for your great-great-great-grandchildren’s lifetimes. Your discovery would be immortalized above for the life of the star.
Inside this book you will discover:
-String theory and how it came about -Black holes and quantum gravity -If Schrödinger’s Cat is really a cat? -Disagreements between Einstein and Bohr -The double slit experiment
Attention! Quantum Physics is NOT for everyone!
This book is not for people: -Who doesn’t want to impress their girl with science -Who are not curious about the universe -Who isn’t inspired to name their own science theory
If you are ready to learn about quantum physics, Scroll Up And Click On The “BUY NOW” Button Now!
Wittgenstein: On Human Nature (The Great Philosophers Series)
P.M.S. Hacker - 1985
Hacker leads us into a world of philosophical investigation in which to smell a rat is ever so much easier than to trap it. Wittgenstein defined humans as language-using creatures. The role of philosophy is to ask questions which reveal the limits and nature of language. Taking the expression, description and observation of pain as examples, Hacker explores the ingenuity with which Wittgenstein identified the rules and set the limits of language. (less)
A Mathematical Introduction to Logic
Herbert B. Enderton - 1972
The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.
Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed
Derrick Niederman - 2009
Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively
Elementary Number Theory and Its Applications
Kenneth H. Rosen - 1984
The Fourth Edition builds on this strength with new examples, additional applications and increased cryptology coverage. Up-to-date information on the latest discoveries is included.Elementary Number Theory and Its Applications provides a diverse group of exercises, including basic exercises designed to help students develop skills, challenging exercises and computer projects. In addition to years of use and professor feedback, the fourth edition of this text has been thoroughly accuracy checked to ensure the quality of the mathematical content and the exercises.
Wonders Beyond Numbers: A Brief History of All Things Mathematical
Johnny Ball - 2017
By introducing us to the major characters and leading us through many historical twists and turns, Johnny slowly unravels the tale of how humanity built up a knowledge and understanding of shapes, numbers and patterns from ancient times, a story that leads directly to the technological wonderland we live in today. As Galileo said, 'Everything in the universe is written in the language of mathematics', and Wonders Beyond Numbers is your guide to this language.Mathematics is only one part of this rich and varied tale; we meet many fascinating personalities along the way, such as a mathematician who everyone has heard of but who may not have existed; a Greek philosopher who made so many mistakes that many wanted his books destroyed; a mathematical artist who built the largest masonry dome on earth, which builders had previously declared impossible; a world-renowned painter who discovered mathematics and decided he could no longer stand the sight of a brush; and a philosopher who lost his head, but only after he had died.Enriched with tales of colourful personalities and remarkable discoveries, there is also plenty of mathematics for keen readers to get stuck into. Written in Johnny Ball's characteristically light-hearted and engaging style, this book is packed with historical insight and mathematical marvels; join Johnny and uncover the wonders found beyond the numbers.
Introducing Infinity: A Graphic Guide
Brian Clegg - 2012
The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.
This is not a book
Michael Picard - 2007
Each section also includes quizzes, games, and mental exercises.
Ada Lovelace: A Life from Beginning to End (Biographies of Women in History Book 12)
Hourly History - 2019
Free BONUS Inside! As the sole legitimate child of Lord Byron, Ada Lovelace was the progeny of literary royalty. Many might have naturally expected her to go into the field of her father, but instead of delving into poetry, she delved into the hard sciences of mathematics and analytic thinking. Even so, Ada still had the imagination of a lyricist when writing scientific treatises, at times referring to her own work as nothing short of “poetical science.” Everything she did, she did with passion and dogged determination. It was this drive that led Ada to look farther and search deeper than her contemporaries. Her unique vision led her to become one of the pioneers of the modern computer and one of the world’s first computer programmers. But what exactly do we know about Ada Lovelace, and how can it be quantified? Read this book to find out more about the nineteenth-century mathematician and writer Augusta Ada King, Countess of Lovelace. Discover a plethora of topics such as
The Daughter of Lord and Lady Byron
Early Years of Paralysis
The World’s First Computer Programmer
Rumors and Laudanum Addiction
A Grim Prognosis
Last Days and Death
And much more!
So if you want a concise and informative book on Ada Lovelace, simply scroll up and click the "Buy now" button for instant access!
Gamma: Exploring Euler's Constant
Julian Havil - 2003
Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"
Chemical Principles: The Quest for Insight
Peter Atkins - 1999
Unlike other texts, it begins with a detailed picture of the atom then builds toward chemistry's frontier, continually demonstrating how to solve problems, think about nature and matter, and visualize chemical concepts in the same ways as working chemists. The new edition incorporates features that extend the book's emphasis on modern techniques and applications while strengthening its problem solving approach. Atkins/Jones is the only book for this course featuring integrated book specific media that provides students with effective study help via a variety of electronic tools. The website at http: //www.whfreeman.com/chemicalprinciples3e has been developed simultaneously with the text and offers a range of tools for problem solving and chemical exploration
Computer Science Illuminated
Nell B. Dale - 2002
Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.
The Nothing That Is: A Natural History of Zero
Robert M. Kaplan - 1999
As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.