Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies
Geoffrey B. West - 2017
The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses. Fascinated by issues of aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science, creating a new understanding of energy use and metabolism: West found that despite the riotous diversity in the sizes of mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. This speaks to everything from how long we can expect to live to how many hours of sleep we need. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism's body. West's work has been game-changing for biologists, but then he made the even bolder move of exploring his work's applicability to cities. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. For every doubling in a city's size, the city needs 15% less road, electrical wire, and gas stations to support the same population. More amazingly, for every doubling in size, cities produce 15% more patents and more wealth, as well as 15% more crime and disease. This broad pattern lays the groundwork for a new science of cities. Recently, West has applied his revolutionary work on cities and biological life to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune, however diverse and unrelated they are to each other.From the Hardcover edition.
Amusements in Mathematics
Henry Ernest Dudeney - 1917
Intriguing, witty, paradoxical productions of one of the world's foremost creators of puzzles.This book was converted from its physical edition to the digital format by a community of volunteers. You may find it for free on the web. Purchase of the Kindle edition includes wireless delivery.
The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us
Noson S. Yanofsky - 2013
This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
e: the Story of a Number
Eli Maor - 1993
Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.
The Number Devil: A Mathematical Adventure
Hans Magnus Enzensberger - 1997
As we dream with him, we are taken further and further into mathematical theory, where ideas eventually take flight, until everyone--from those who fumble over fractions to those who solve complex equations in their heads--winds up marveling at what numbers can do.Hans Magnus Enzensberger is a true polymath, the kind of superb intellectual who loves thinking and marshals all of his charm and wit to share his passions with the world. In The Number Devil, he brings together the surreal logic of Alice in Wonderland and the existential geometry of Flatland with the kind of math everyone would love, if only they had a number devil to teach them.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives
Stephen Thomas Ziliak - 2008
If it takes a book to get it across, I hope this book will do it. It ought to.”—Thomas Schelling, Distinguished University Professor, School of Public Policy, University of Maryland, and 2005 Nobel Prize Laureate in Economics “With humor, insight, piercing logic and a nod to history, Ziliak and McCloskey show how economists—and other scientists—suffer from a mass delusion about statistical analysis. The quest for statistical significance that pervades science today is a deeply flawed substitute for thoughtful analysis. . . . Yet few participants in the scientific bureaucracy have been willing to admit what Ziliak and McCloskey make clear: the emperor has no clothes.”—Kenneth Rothman, Professor of Epidemiology, Boston University School of Health The Cult of Statistical Significance shows, field by field, how “statistical significance,” a technique that dominates many sciences, has been a huge mistake. The authors find that researchers in a broad spectrum of fields, from agronomy to zoology, employ “testing” that doesn’t test and “estimating” that doesn’t estimate. The facts will startle the outside reader: how could a group of brilliant scientists wander so far from scientific magnitudes? This study will encourage scientists who want to know how to get the statistical sciences back on track and fulfill their quantitative promise. The book shows for the first time how wide the disaster is, and how bad for science, and it traces the problem to its historical, sociological, and philosophical roots. Stephen T. Ziliak is the author or editor of many articles and two books. He currently lives in Chicago, where he is Professor of Economics at Roosevelt University. Deirdre N. McCloskey, Distinguished Professor of Economics, History, English, and Communication at the University of Illinois at Chicago, is the author of twenty books and three hundred scholarly articles. She has held Guggenheim and National Humanities Fellowships. She is best known for How to Be Human* Though an Economist (University of Michigan Press, 2000) and her most recent book, The Bourgeois Virtues: Ethics for an Age of Commerce (2006).
Quadrivium: The Four Classical Liberal Arts of Number, Geometry, Music, & Cosmology
John Martineau - 2010
It was studied from antiquity to the Renaissance as a way of glimpsing the nature of reality. Geometry is number in space; music is number in time; and comology expresses number in space and time. Number, music, and geometry are metaphysical truths: life across the universe investigates them; they foreshadow the physical sciences.Quadrivium is the first volume to bring together these four subjects in many hundreds of years. Composed of six successful titles in the Wooden Books series-Sacred Geometry, Sacred Number, Harmonograph, The Elements of Music, Platonic & Archimedean Solids, and A Little Book of Coincidence-it makes ancient wisdom and its astonishing interconnectedness accessible to us today.Beautifully produced in six different colors of ink, Quadrivium will appeal to anyone interested in mathematics, music, astronomy, and how the universe works.
The Perfect Bet: How Science and Math Are Taking the Luck Out of Gambling
Adam Kucharski - 2015
In The Perfect Bet, mathematician and award-winning writer Adam Kucharski tells the astonishing story of how the experts have succeeded, revolutionizing mathematics and science in the process. The house can seem unbeatable. Kucharski shows us just why it isn't. Even better, he demonstrates how the search for the perfect bet has been crucial for the scientific pursuit of a better world.
The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy
Sašo Dolenc - 2012
The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
Lewis Carroll in Numberland: His Fantastical Mathematical Logical Life
Robin J. Wilson - 2008
Fascinated by the inner life of Charles Lutwidge Dodson, Robin Wilson, a Carroll scholar and a noted mathematics professor, has produced this revelatory book—filled with more than one hundred striking and often playful illustrations—that examines the many inspirations and sources for Carroll's fantastical writings, mathematical and otherwise. As Wilson demonstrates, Carroll—who published serious, if occasionally eccentric, works in the fields of geometry, logic, and algebra—made significant contributions to subjects as varied as voting patterns and the design of tennis tournaments, in the process creating imaginative recreational puzzles based on mathematical ideas. In the tradition of Sylvia Nasar's A Beautiful Mind and Andrew Hodges's Alan Turing, this is an engaging look at the incredible genius of one of mathematics' and literature's most enigmatic minds.
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.
The Poincaré Conjecture: In Search of the Shape of the Universe
Donal O'Shea - 2007
He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics
Steven E. Landsburg - 2009
Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.