Elementary Analysis: The Theory of Calculus


Kenneth A. Ross - 1980
    It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Indiscrete Thoughts


Gian-Carlo Rota - 1996
    The era covered by this book, 1950 to 1990, was surely one of the golden ages of science as well as the American university.Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period Stanislav Ulam (who, together with Edward Teller, signed the patent application for the hydrogen bomb), Solomon Lefschetz (Chairman in the 50s of the Princeton mathematics department), William Feller (one of the founders of modern probability theory), Jack Schwartz (one of the founders of computer science), and many others.Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. After the publication of the essay "The Pernicious Influence of Mathematics upon Philosophy" (reprinted six times in five languages) the author was blacklisted in analytical philosophy circles. Indiscrete Thoughts should become an instant classic and the subject of debate for decades to come."Read Indiscrete Thoughts for its account of the way we were and what we have become; for its sensible advice and its exuberant rhetoric."--The Mathematical Intelligencer"Learned, thought-provoking, politically incorrect, delighting in paradox, and likely to offend but everywhere readable and entertaining."--The American Mathematical Monthly"It is about mathematicians, the way they think, and the world in which the live. It is 260 pages of Rota calling it like he sees it... Readers are bound to find his observations amusing if not insightful. Gian-Carlo Rota has written the sort of book that few mathematicians could write. What will appeal immediately to anyone with an interest in research mathematics are the stories he tells about the practice of modern mathematics."--MAA Reviews"

A Numerate Life: A Mathematician Explores the Vagaries of Life, His Own and Probably Yours


John Allen Paulos - 2015
    These vignettes serve as springboards to many telling perspectives: simple arithmetic puts life-long habits in a dubious new light; higher dimensional geometry helps us see that we're all rather peculiar; nonlinear dynamics explains the narcissism of small differences cascading into very different siblings; logarithms and exponentials yield insight on why we tend to become bored and jaded as we age; and there are tricks and jokes, probability and coincidences, and much more.For fans of Paulos or newcomers to his work, this witty commentary on his life--and yours--is fascinating reading.From the Trade Paperback edition.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers


Joseph Mazur - 2014
    What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Time Reborn: From the Crisis in Physics to the Future of the Universe


Lee Smolin - 2013
    You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.

Euclid's Elements


Euclid
    Heath's translation of the thirteen books of Euclid's Elements. In keeping with Green Lion's design commitment, diagrams have been placed on every spread for convenient reference while working through the proofs; running heads on every page indicate both Euclid's book number and proposition numbers for that page; and adequate space for notes is allowed between propositions and around diagrams. The all-new index has built into it a glossary of Euclid's Greek terms.Heath's translation has stood the test of time, and, as one done by a renowned scholar of ancient mathematics, it can be relied upon not to have inadvertantly introduced modern concepts or nomenclature. We have excised the voluminous historical and scholarly commentary that swells the Dover edition to three volumes and impedes classroom use of the original text. The single volume is not only more convenient, but less expensive as well.

The Story of Mathematics


Anne Rooney - 2008
    Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.

Mathematics and the Imagination


Edward Kasner - 1940
    But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.