Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures


Claus O. Wilke - 2019
    But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options.This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization.Explore the basic concepts of color as a tool to highlight, distinguish, or represent a valueUnderstand the importance of redundant coding to ensure you provide key information in multiple waysUse the book's visualizations directory, a graphical guide to commonly used types of data visualizationsGet extensive examples of good and bad figuresLearn how to use figures in a document or report and how employ them effectively to tell a compelling story

Pro C# 3.0 and the .NET 3.5 Framework (Pro)


Andrew Troelsen - 2007
    Since that time, this text has been revised, tweaked, and enhanced to account for the changes found within each release of the .NET platform (1.1, 2.0, 3.0 and now 3.5)..NET 3.0 was more of an augmentative release, essentially providing three new APIs: Windows Presentation Foundation (WPF), Windows Communication Foundation (WCF) and Windows Workflow Foundation (WF). As you would expect, coverage of the "W's" has been expanded a great deal in this version of the book from the previous Special Edition text.Unlike .NET 3.0, .NET 3.5 provides dozens of C# language features and .NET APIs. This edition of the book will walk you through all of this material using the same readable approach as was found in previous editions. Rest assured, you'll find detailed coverage of Language Integrated Query (LINQ), the C# 2008 language changes (automatic properties, extension methods, anonymous types, etc.) and the numerous bells and whistles of Visual Studio 2008. What you'll learn Everything you need to knowget up to speed with C# 2008 quickly and efficiently. Discover all the new .NET 3.5 featuresLanguage Integrated Query, anonymous types, extension methods, automatic properties, and more. Get a professional footholdtargeted to appeal to experienced software professionals, this book gives you the facts you need the way you need to see them. A rock-solid foundationfocuses on everything you need to be a successful .NET 3.5 programmer, not just the new features. Get comfortable with all the core aspects of the platform including assemblies, remoting, Windows Forms, Web Forms, ADO.NET, XML web services, and much more. Who this book is forIf you're checking out this book for the first time, understand that it targets experienced software professionals and/or students of computer science (so please don't expect three chapters devoted to "for" loops). The mission of this text is to provide you with a rock-solid foundation to the C# 2008 programming language and the core aspects of the .NET platform (object-oriented programming, assemblies, file IO, Windows Forms/WPF, ASP.NET, ADO.NET, WCF, WF, etc.). Once you digest the information presented in these 33 chapters, you'll be in a perfect position to apply this knowledge to your specific programming assignments, and you'll be well equipped to explore the .NET universe on your own terms. "

HTML for the World Wide Web with XHTML and CSS (Visual QuickStart Guide)


Elizabeth Castro - 2002
    The task-based approach teaches readers how to combine HTML and CSS to create sharp and consistent Web pages.

The D Programming Language


Andrei Alexandrescu - 2010
    I'm sure you'll find the read rewarding." --From the Foreword by Scott Meyers D is a programming language built to help programmers address the challenges of modern software development. It does so by fostering modules interconnected through precise interfaces, a federation of tightly integrated programming paradigms, language-enforced thread isolation, modular type safety, an efficient memory model, and more. The D Programming Language is an authoritative and comprehensive introduction to D. Reflecting the author's signature style, the writing is casual and conversational, but never at the expense of focus and pre-cision. It covers all aspects of the language (such as expressions, statements, types, functions, contracts, and modules), but it is much more than an enumeration of features. Inside the book you will find In-depth explanations, with idiomatic examples, for all language features How feature groups support major programming paradigms Rationale and best-use advice for each major feature Discussion of cross-cutting issues, such as error handling, contract programming, and concurrency Tables, figures, and "cheat sheets" that serve as a handy quick reference for day-to-day problem solving with D Written for the working programmer, The D Programming Language not only introduces the D language--it presents a compendium of good practices and idioms to help both your coding with D and your coding in general.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Interactive Data Visualization for the Web


Scott Murray - 2013
    It’s easy and fun with this practical, hands-on introduction. Author Scott Murray teaches you the fundamental concepts and methods of D3, a JavaScript library that lets you express data visually in a web browser. Along the way, you’ll expand your web programming skills, using tools such as HTML and JavaScript.This step-by-step guide is ideal whether you’re a designer or visual artist with no programming experience, a reporter exploring the new frontier of data journalism, or anyone who wants to visualize and share data.Learn HTML, CSS, JavaScript, and SVG basicsDynamically generate web page elements from your data—and choose visual encoding rules to style themCreate bar charts, scatter plots, pie charts, stacked bar charts, and force-directed layoutsUse smooth, animated transitions to show changes in your dataIntroduce interactivity to help users explore data through different viewsCreate customized geographic maps with dataExplore hands-on with downloadable code and over 100 examples

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

CSS and Documents


Eric A. Meyer - 2012
    

Async in C# 5.0


Alex Davies - 2012
    Along with a clear introduction to asynchronous programming, you get an in-depth look at how the async feature works and why you might want to use it in your application.Written for experienced C# programmers—yet approachable for beginners—this book is packed with code examples that you can extend for your own projects.Write your own asynchronous code, and learn how async saves you from this messy choreDiscover new performance possibilities in ASP.NET web server codeExplore how async and WinRT work together in Windows 8 applicationsLearn the importance of the await keyword in async methodsUnderstand which .NET thread is running your code—and at what points in the programUse the Task-based Asynchronous Pattern (TAP) to write asynchronous APIs in .NETTake advantage of parallel computing in modern machinesMeasure async code performance by comparing it with alternatives

Statistical Inference


George Casella - 2001
    Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.

Sams Teach Yourself PHP, MySQL and Apache


Julie C. Meloni - 2003
    You have also created a website for your business that details the products or services that you offer, but it doesn't allow potential customers to purchase anything online. Don't risk losing business-learn to create a dynamic online environment using only three programs. PHP, MySQL and Apache are three popular open-source tools that can work together to help you create a dynamic website, such as an online shopping experience. Sams Teach Yourself PHP, MySQL and Apache All in One is a complete reference manual for all three development tools. You will learn how to install, configure and set up the PHP scripting language, use the MySQL database system, and work with the Apache Web server. Then you'll take it a step further and discover how they work together to create a dynamic website. Use the book and the included CD to create a simple website, as well as a mailing list, online address book, shopping cart and storefront. Updated to reflect the most recent developments in PHP and MySQL, including the final stable release of MySQL 5.0, you will open your website to limitless possibilities with Sams Teach Yourself PHP, MySQL and Apache All in One.

An Introduction to APIs


Brian Cooksey - 2016
    We start off easy, defining some of the tech lingo you may have heard before, but didn’t fully understand. From there, each lesson introduces something new, slowly building up to the point where you are confident about what an API is and, for the brave, could actually take a stab at using one.

Thinking with Data


Max Shron - 2014
    In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills.Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved.Learn a framework for scoping data projectsUnderstand how to pin down the details of an idea, receive feedback, and begin prototypingUse the tools of arguments to ask good questions, build projects in stages, and communicate resultsExplore data-specific patterns of reasoning and learn how to build more useful argumentsDelve into causal reasoning and learn how it permeates data workPut everything together, using extended examples to see the method of full problem thinking in action