At Home in the Universe: The Search for the Laws of Self-Organization and Complexity


Stuart A. Kauffman - 1995
    At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of greatcivilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertilemix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is agreat undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls order for free, that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a newentity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much likethe phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not ahighly improbable chance event, but almost inevitable). Kauffman uses the basic insight of order for free to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science ofcomplexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules tofind new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element toKauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it a landmark and a classic. And Nobel Laureate Philip Anderson wrote that there are few people in this world who ever ask the right questions of science, and they are theones who affect its future most profoundly. Stuart Kauffman is one of these. In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.

Symbiotic Planet: A New Look at Evolution


Lynn Margulis - 1998
    Most remarkably, The Origin of Species said very little about, of all things, the origins of species. Darwin and his modern successors have shown very convincingly how inherited variations are naturally selected, but they leave unanswered how variant organisms come to be in the first place.In Symbiotic Planet, renowned scientist Lynn Margulis shows that symbiosis, which simply means members of different species living in physical contact with each other, is crucial to the origins of evolutionary novelty. Ranging from bacteria, the smallest kinds of life, to the largest—the living Earth itself—Margulis explains the symbiotic origins of many of evolution’s most important innovations. The very cells we’re made of started as symbiotic unions of different kinds of bacteria. Sex—and its inevitable corollary, death—arose when failed attempts at cannibalism resulted in seasonally repeated mergers of some of our tiniest ancestors. Dry land became forested only after symbioses of algae and fungi evolved into plants. Since all living things are bathed by the same waters and atmosphere, all the inhabitants of Earth belong to a symbiotic union. Gaia, the finely tuned largest ecosystem of the Earth’s surface, is just symbiosis as seen from space. Along the way, Margulis describes her initiation into the world of science and the early steps in the present revolution in evolutionary biology; the importance of species classification for how we think about the living world; and the way “academic apartheid” can block scientific advancement. Written with enthusiasm and authority, this is a book that could change the way you view our living Earth.

Sync: The Emerging Science of Spontaneous Order


Steven H. Strogatz - 2003
    Along the tidal rivers of Malaysia, thousands of fireflies congregate and flash in unison; the moon spins in perfect resonance with its orbit around the earth; our hearts depend on the synchronous firing of ten thousand pacemaker cells. While the forces that synchronize the flashing of fireflies may seem to have nothing to do with our heart cells, there is in fact a deep connection. Synchrony is a science in its infancy, and Strogatz is a pioneer in this new frontier in which mathematicians and physicists attempt to pinpoint just how spontaneous order emerges from chaos. From underground caves in Texas where a French scientist spent six months alone tracking his sleep-wake cycle, to the home of a Dutch physicist who in 1665 discovered two of his pendulum clocks swinging in perfect time, this fascinating book spans disciplines, continents, and centuries. Engagingly written for readers of books such as Chaos and The Elegant Universe, Sync is a tour-de-force of nonfiction writing.

The Vital Question: Energy, Evolution, and the Origins of Complex Life


Nick Lane - 2015
    Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?

Emergence: The Connected Lives of Ants, Brains, Cities, and Software


Steven Johnson - 2001
    Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.

Darwin's Dangerous Idea: Evolution and the Meanings of Life


Daniel C. Dennett - 1995
    Dennett, whom Chet Raymo of The Boston Globe calls "one of the most provocative thinkers on the planet," focuses his unerringly logical mind on the theory of natural selection, showing how Darwin's great idea transforms and illuminates our traditional view of humanity's place in the universe. Dennett vividly describes the theory itself and then extends Darwin's vision with impeccable arguments to their often surprising conclusions, challenging the views of some of the most famous scientists of our day.

Climbing Mount Improbable


Richard Dawkins - 1996
    What drives species to evolve? How can intricate structures such as the human eye, the spider's web or the wings of birds develop, seemingly by chance? Regarding evolution's most complex achievements as peaks on a metaphorical mountain, Climbing Mount Improbable reveals the ways in which the theory of natural selection can precisely explain the beautiful, bizarre and seemingly 'designed' complexity of living things.And through it all runs the thread of DNA, the molecule of life, responsible for its own destiny on an unending pilgrimage through time. Accompanied by evocative illustrations, Dawkins's eloquent descriptions of the living world's astonishing adaptations throw back the curtain on the mysteries of 'Mount Improbable'.An alternative cover edition for this ISBN can be found here.

Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies


Geoffrey B. West - 2017
    The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses. Fascinated by issues of aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science, creating a new understanding of energy use and metabolism: West found that despite the riotous diversity in the sizes of mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. This speaks to everything from how long we can expect to live to how many hours of sleep we need. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism's body. West's work has been game-changing for biologists, but then he made the even bolder move of exploring his work's applicability to cities. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. For every doubling in a city's size, the city needs 15% less road, electrical wire, and gas stations to support the same population. More amazingly, for every doubling in size, cities produce 15% more patents and more wealth, as well as 15% more crime and disease. This broad pattern lays the groundwork for a new science of cities. Recently, West has applied his revolutionary work on cities and biological life to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune, however diverse and unrelated they are to each other.From the Hardcover edition.

Life's Edge: The Search for What It Means to Be Alive


Carl Zimmer - 2021
    Is the apple sitting on your kitchen counter alive, or is only the apple tree it came from deserving of the word? If we can't answer that question here on earth, how will we know when and if we discover alien life on other worlds? The question hangs over some of society's most charged conflicts--whether a fertilized egg is a living person, for example, and when we ought to declare a person legally dead.Charting the obsession with Dr. Frankenstein's monster and how Coleridge came to believe the whole universe was alive, Zimmer leads us all the way into the labs and minds of researchers working on engineering life from the ground up.

Venomous: How Earth's Deadliest Creatures Mastered Biochemistry


Christie Wilcox - 2016
    Humans have feared them for centuries, long considering them the assassins and pariahs of the natural world.Now, in Venomous, the biologist Christie Wilcox investigates and illuminates the animals of our nightmares, arguing that they hold the keys to a deeper understanding of evolution, adaptation, and immunity. She reveals just how venoms function and what they do to the human body. With Wilcox as our guide, we encounter a jellyfish with tentacles covered in stinging cells that can kill humans in minutes; a two-inch caterpillar with toxic bristles that trigger hemorrhaging; and a stunning blue-ringed octopus capable of inducing total paralysis. How do these animals go about their deadly work? How did they develop such intricate, potent toxins? Wilcox takes us around the world and down to the cellular level to find out.Throughout her journey, Wilcox meets the intrepid scientists who risk their lives studying these lethal beasts, as well as “self-immunizers” who deliberately expose themselves to snakebites. Along the way, she puts her own life on the line, narrowly avoiding being envenomated herself. Drawing on her own research, Wilcox explains how venom scientists are untangling the mechanisms of some of our most devastating diseases, and reports on pharmacologists who are already exploiting venoms to produce lifesaving drugs. We discover that venomous creatures are in fact keystone species that play crucial roles in their ecosystems and ours—and for this alone, they ought to be protected and appreciated.Thrilling and surprising at every turn, Venomous will change everything you thought you knew about the planet’s most dangerous animals.

Future Evolution


Peter D. Ward - 2001
    Will our species change radically? Or will we become builders of the next dominant intelligence on Earth- the machine?These and other seemingly fantastic scenarios are the very possible realities explored in Peter Ward's Future Evolution, a penetrating look at what might come next in the history of the planet. Looking to the past for clues about the future, Ward describes how the main catalyst for evolutionary change has historically been mass extinction. While many scientist direly predict that humanity will eventually create such a situation, Ward argues that one is already well underway--the extinction of large mammals--and that a new Age of Humanity is coming that will radically revise the diversity of life on Earth. Finally, Ward examines the question of human extinction and reaches the startling conclusion that the likeliest scenario is not our imminent demise but long term survival--perhaps reaching as far as the death of the Sun!Full of Alexis Rockman's breathtaking color images of what animals, plants and other organisms might look like thousands and millions of years from now, Future Evolution takes readers on an incredible journey through time from the deep past into the far future.

Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization


Adrian Bejan - 2012
      Everything—from biological life to inanimate systems—generates shape and structure and evolves in a sequence of ever-improving designs in order to facilitate flow. River basins, cardiovascular systems, and bolts of lightning are very efficient flow systems to move a current—of water, blood, or electricity. Likewise, the more complex architecture of animals evolve to cover greater distance per unit of useful energy, or increase their flow across the land. Such designs also appear in human organizations, like the hierarchical "flowcharts" or reporting structures in corporations and political bodies. All are governed by the same principle, known as the Constructal Law, and configure and reconfigure themselves over time to flow more efficiently. Written in an easy style that achieves clarity without sacrificing complexity, Design in Nature is a paradigm-shifting book that will fundamentally transform our understanding of the world around us.

Out of Control: The New Biology of Machines, Social Systems, and the Economic World


Kevin Kelly - 1992
    Out of Control chronicles the dawn of a new era in which the machines and systems that drive our economy are so complex and autonomous as to be indistinguishable from living things.

Here Be Dragons: How the Study of Animal and Plant Distributions Revolutionized Our Views of Life and Earth


Dennis McCarthy - 2009
    We find animals and plants where we do because, over time, the continents have moved, separating and uniting in a long, slow dance; because sea levels have risen, cutting off one bit of land from another; because new and barren volcanic islands have risen up from the sea; and because animals and plants vary greatly in their ability to travel, and separation causes the formation of new species. This is the story of how life has responded to, and has in turn altered, the ever-changing Earth. And it includes many fascinating tales--of pygmy mammoths and elephant birds and of radical ideas by bold young scientists.

The Tangled Tree: A Radical New History of Life


David Quammen - 2018
    In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important. For instance, we now know that roughly eight percent of the human genome arrived not through traditional inheritance from directly ancestral forms, but sideways by viral infection—a type of HGT.David Quammen chronicles these discoveries through the lives of the researchers who made them—such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.