The Professor Is In: The Essential Guide To Turning Your Ph.D. Into a Job


Karen Kelsky - 2015
     into their ideal job   Each year tens of thousands of students will, after years of hard work and enormous amounts of money, earn their Ph.D. And each year only a small percentage of them will land a job that justifies and rewards their investment. For every comfortably tenured professor or well-paid former academic, there are countless underpaid and overworked adjuncts, and many more who simply give up in frustration.   Those who do make it share an important asset that separates them from the pack: they have a plan. They understand exactly what they need to do to set themselves up for success.  They know what really moves the needle in academic job searches, how to avoid the all-too-common mistakes that sink so many of their peers, and how to decide when to point their Ph.D. toward other, non-academic options.   Karen Kelsky has made it her mission to help readers join the select few who get the most out of their Ph.D. As a former tenured professor and department head who oversaw numerous academic job searches, she knows from experience exactly what gets an academic applicant a job. And as the creator of the popular and widely respected advice site The Professor is In, she has helped countless Ph.D.’s turn themselves into stronger applicants and land their dream careers.   Now, for the first time ever, Karen has poured all her best advice into a single handy guide that addresses the most important issues facing any Ph.D., including:   -When, where, and what to publish -Writing a foolproof grant application -Cultivating references and crafting the perfect CV -Acing the job talk and campus interview -Avoiding the adjunct trap -Making the leap to nonacademic work, when the time is right  The Professor Is In addresses all of these issues, and many more.

Engineering Electromagnetics


William H. Hayt Jr. - 1950
    This edition retains the scope and emphasis that have made the book very successful while adding over twenty new numerical examples and over 550 new end-of-chapter problems.

Understanding Symbolic Logic


Virginia Klenk - 1983
    Each chapter, or unit, is divided into easily comprehended small "bites" that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics. For individuals interested in the formal study of logic.

Conceptual Mathematics: A First Introduction to Categories


F. William Lawvere - 1997
    Written by two of the best-known names in categorical logic, Conceptual Mathematics is the first book to apply categories to the most elementary mathematics. It thus serves two purposes: first, to provide a key to mathematics for the general reader or beginning student; and second, to furnish an easy introduction to categories for computer scientists, logicians, physicists, and linguists who want to gain some familiarity with the categorical method without initially committing themselves to extended study.

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

An Introduction to Thermal Physics


Daniel V. Schroeder - 1999
    Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.

From Here to Infinity: A Vision for the Future of Science


Martin J. Rees - 2011
    To shape debates over health care, energy policy, space travel, and other vital issues, ordinary citizens must engage directly with research rather than relying on pundits’ and politicians’ interpretations. Otherwise, fringe opinions that have been discredited in the scientific community can take hold in the public imagination. At the same time, scientists must understand their roles as communicators and ambassadors as well as researchers.Rees not only diagnoses this central problem but also explains how scientists and the general public can deploy a global, long-term perspective to address the new challenges we face. In the process, he reveals critical shortcomings in our current system—for example, the tendency to be overly anxious about minor hazards while underrating the risk of potential catastrophes. Offering a strikingly clear portrait of the future of science, Rees tackles such diverse topics as the human brain, the possibility that humans will colonize other planets, and the existence of extraterrestrial life in order to distinguish between what scientists can hope to discover and what will always lie beyond our grasp.A fresh perspective on science’s significance and potential, From Here to Infinity will inspire and enlighten.

Parallel Worlds: A Journey through Creation, Higher Dimensions, and the Future of the Cosmos


Michio Kaku - 2004
    Kaku skillfully guides us through the latest innovations in string theory and its latest iteration, M-theory, which posits that our universe may be just one in an endless multiverse, a singular bubble floating in a sea of infinite bubble universes. If M-theory is proven correct, we may perhaps finally find answer to the question, “What happened before the big bang?” This is an exciting and unforgettable introduction into the new cutting-edge theories of physics and cosmology from one of the pre-eminent voices in the field.

Operating System Concepts


Abraham Silberschatz - 1985
    By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.

We Have No Idea: A Guide to the Unknown Universe


Jorge Cham - 2017
    While they're at it, they helpfully demystify many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humor and delight, they invite us to see the universe as a vast expanse of mostly uncharted territory that's still ours to explore.This entertaining illustrated science primer is the perfect book for anyone who's curious about all the big questions physicists are still trying to answer.

Complex Adaptive Systems: An Introduction to Computational Models of Social Life


John H. Miller - 2007
    Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.

Pocket Medicine: The Massachusetts General Hospital Handbook of Internal Medicine


Marc S. Sabatine - 2000
    In bulleted lists, tables, and algorithms, Pocket Medicine provides key clinical information about common problems in cardiology, pulmonology, gastroenterology, nephrology, hematology-oncology, infectious diseases, endocrinology, rheumatology, and neurology.The six-ring binder resembles the familiar "pocket brain" notebook that most students and interns carry and allows users to add notes. This Third Edition is fully updated, has tabs to help readers locate organ systems, and has more cross-referencing in the index. It also has pockets in the front and the back of the book to accommodate the reader's own notes.

Einstein's Monsters: The Life and Times of Black Holes


Chris Impey - 2018
    Every massive star leaves behind a black hole when it dies, and every galaxy harbors a supermassive black hole at its center. Frighteningly enigmatic, these dark giants continue to astound even the scientists who spend their careers studying them. Which came first, the galaxy or its central black hole? What happens if you travel into one—instant death or something weirder? And, perhaps most important, how can we ever know anything for sure about black holes when they destroy information by their very nature?In Einstein’s Monsters, distinguished astronomer Chris Impey takes readers on an exploration of these and other questions at the cutting edge of astrophysics, as well as the history of black holes’ role in theoretical physics—from confirming Einstein’s equations for general relativity to testing string theory. He blends this history with a poignant account of the phenomena scientists have witnessed while observing black holes: stars swarming like bees around the center of our galaxy; black holes performing gravitational waltzes with visible stars; the cymbal clash of two black holes colliding, releasing ripples in space-time.Clear, compelling, and profound, Einstein’s Monsters reveals how our comprehension of black holes is intrinsically linked to how we make sense of the universe and our place within it. From the small questions to the big ones—from the tiniest particles to the nature of space-time itself—black holes might be the key to a deeper understanding of the cosmos.