Book picks similar to
Limits on Efficient Computation in the Physical World by Scott Aaronson
science
data-science
mathematics
physics
Life After Death, Powerful Evidence You Will Never Die
Stephen Hawley Martin - 2015
He spent two years gathering information that demonstrates this and along the way interviewed more than a hundred experts in a number of different fields. Among them were parapsychologists, medical doctors, psychologists, psychiatrists, quantum physicists, and researchers into the true nature of reality. Specific examples are presented that indicate what happens when we die, for example that memories can be formed and retained despite a subject’s brain having been shutdown and the blood drained from it. Questions such as whether or not you will be able to communicate with living loved ones after death are addressed, if it is possible to be reborn, and what might be missing from reproductive theory to explain the various phenomena indicated in the many case histories and scientific investigations presented. All of us will someday cross the border to what Shakespeare called "The undiscovered country." As long as we must make that trip, wouldn’t it be smart to find out where we are going and what to expect when we get there?
Discerning Truth
Jason Lisle - 2010
What do you say when your faith is challenged by those claiming to speak in the name of science or reason? Discerning Truth provides a practical and engaging resource on the use of logic in this critical debate. Filled with anecdotes from both creative examples and real-life illustrations that help clarify logical issues in apologetics. Become skilled at distinguishing sound arguments from emotionally-charged rhetoric. Helps any believer refute evolutionary perspectives. Lisle believes that creationists need to be able to recognize and refute evolutionist arguments, and to do so in a way that both honors God and lines up with the truth of His Word (Eph. 5:1). The role of logic, the study of correct reasoning, is becoming a vanishing skill in our society. Yet it is a vital tool in assisting Christians in assessing the weaknesses in evolutionary thought. Here is the clear and concise guide for every believer in defending your faith in the face of adversity.
Quantum Mechanics
Jim Al-Khalili - 2017
You'll discover how the sun shines, why light is both a wave and a particle, the certainty of the Uncertainty Principle, Schrodinger's Cat, Einstein's spooky action, how to build a quantum computer, and why quantum mechanics drives even its experts completely crazy.
'Jim Al-Khalili has done an admirable job of condensing the ideas of quantum physics from Max Planck to the possibilities of quantum computers into brisk, straightforward English' The Times
Gödel, Escher, Bach
Agnes F. Vandome - 2010
C. Escher and composer Johann Sebastian Bach, discussing common themes in their work and lives. At a deeper level, the book is a detailed and subtle exposition of concepts fundamental to mathematics, symmetry, and intelligence. Through illustration and analysis, the book discusses how self-reference and formal rules allow systems to acquire meaning despite being made of "meaningless" elements. It also discusses what it means to communicate, how knowledge can be represented and stored, the methods and limitations of symbolic representation, and even the fundamental notion of "meaning" itself. In response to confusion over the book's theme, Hofstadter has emphasized that GEB is not about mathematics, art, and music but rather about how cognition and thinking emerge from well-hidden neurological mechanisms.
Fundamentals of Engineering Electromagnetics
David K. Cheng - 1992
It has been developed in response to the need for a text that supports the mastery of this difficult subject. Therefore, in addition to presenting electromagnetics in a concise and logical manner, the text includes end-of-section review questions, worked examples, boxed remarks that alert students to key ideas and tricky points, margin notes, and point-by-point chapter summaries. Examples and applications invite students to solve problems and build their knowledge of electromagnetics. Application topics include: electric motors, transmission lines, waveguides, antenna arrays and radar systems.
Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study
Ed Regis - 1987
Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
The Arrow of Time
Peter Coveney - 1988
Theories that contain time as a simple quantity form the basis of our understanding of many scientific disciplines, yet the debate rages on: why does there seem to be a direction to time, an arrow of time pointing from past to future?In The Arrow of Time, a major bestseller in England, Dr. Peter Coveney, a research scientist, and award-winning journalist Dr. Roger Highfield, demonstrate that the commonsense view of time agrees with the most advanced scientific theory. Time does in fact move like an arrow, shooting forward into what is genuinely unknown, leaving the past immutably behind. The authors make their case by exploring three centuries of science, offering bold reinterpretations of Newton's mechanics, Einstein's special and general theories of relativity, quantum mechanics, and advancing the insights of James Gleick's Chaos.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
Elliptic Tales: Curves, Counting, and Number Theory
Avner Ash - 2012
The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.
Dance of the Photons: From Einstein to Quantum Teleportation
Anton Zeilinger - 2003
Accordingly, he once derided as "spooky action at a distance" the notion that two elementary particles far removed from each other could nonetheless influence each other's properties—a hypothetical phenomenon his fellow theorist Erwin Schrödinger termed "quantum entanglement."In a series of ingenious experiments conducted in various locations—from a dank sewage tunnel under the Danube River to the balmy air between a pair of mountain peaks in the Canary Islands—the author and his colleagues have demonstrated the reality of such entanglement using photons, or light quanta, created by laser beams. In principle the lessons learned may be applicable in other areas, including the eventual development of quantum computers.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Kurt Gödel - 1992
Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.
Entropy Demystified: The Second Law Reduced To Plain Common Sense
Arieh Ben-Naim - 2007
The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process.
Simply Einstein: Relativity Demystified
Richard Wolfson - 2002
Drawing from years of teaching modern physics to nonscientists, Wolfson explains in a lively, conversational style the simple principles underlying Einstein's theory.Relativity, Wolfson shows, gave us a new view of space and time, opening the door to questions about their flexible nature: Is the universe finite or infinite? Will it expand forever or eventually collapse in a "big crunch"? Is time travel possible? What goes on inside a black hole? How does gravity really work? These questions at the forefront of twenty-first-century physics are all rooted in the profound and sweeping vision of Albert Einstein's early twentieth-century theory. Wolfson leads his readers on an intellectual journey that culminates in a universe made almost unimaginably rich by the principles that Einstein first discovered.
Infinite Potential: What Quantum Physics Reveals About How We Should Live
Lothar Schäfer - 2013
With his own research as well as that of some of the most distinguished scientists of our time, Schäfer moves us from a reality of Darwinian competition to cooperation, a meaningless universe to a meaningful one, and a disconnected, isolated existence to an interconnected one. In so doing, he shows us that our potential is infinite and calls us to live in accordance with the order of the universe, creating a society based on the cosmic principle of connection, emphasizing cooperation and community.