No bullshit guide to math and physics


Ivan Savov - 2010
    It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.

A Student's Guide to Maxwell's Equations


Daniel Fleisch - 2007
    In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Beyond Infinity: An Expedition to the Outer Limits of Mathematics


Eugenia Cheng - 2017
    Along the way she considers how to use a chessboard to plan a worldwide dinner party, how to make a chicken-sandwich sandwich, and how to create infinite cookies from a finite ball of dough. Beyond Infinity shows how this little symbol holds the biggest idea of all. "Beyond Infinity is a spirited and friendly guide--appealingly down to earth about math that's extremely far out." --Jordan Ellenberg, author of How Not to Be Wrong "Dr. Cheng . . . has a knack for brushing aside conventions and edicts, like so many pie crumbs from a cutting board." --Natalie Angier, New York Times

Game Theory


Drew Fudenberg - 1991
    The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu

Adventures of a Computational Explorer


Stephen Wolfram - 2019
    In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.

Poetry of the Universe


Robert Osserman - 1995
    40 illustrations throughout.

Principles of Microeconomics


Robert H. Frank - 1994
    

365 More Things People Believe That Aren't True


James Egan - 2014
    Some mammoths were smaller than children. Owls are the dumbest birds in the world. Very few people with Tourette's syndrome swear. You can't get a six-pack from doing sit-ups. King Arthur's sword wasn't called Excalibur. Milk doesn't make your bones strong. There's no bones in your fingers. The Bible states that humans can't become angels. Humans have more than two nostrils. It's impossible to slide down a bannister. At a wedding, the bride doesn't walk down the aisle. Ties were invented for war, not fashion. Most Disney classics made almost no money. Slavery has only been illegal in the UK since 2010. George Washington wasn't the first American President. Velcro doesn’t exist. Nobody knows why we sleep.

Elementary Differential Equations


Earl D. Rainville - 1962
    Each chapter includes many illustrative examples to assist the reader. The book emphasizes methods for finding solutions to differential equations. It provides many abundant exercises, applications, and solved examples with careful attention given to readability. Elementary Differential Equations includes a thorough treatment of power series techniques. In addition, the book presents a classical treatment of several physical problems to show how Fourier series become involved in the solution of those problems. The eighth edition of Elementary Differential Equations has been revised to include a new supplement in many chapters that provides suggestions and exercises for using a computer to assist in the understanding of the material in the chapter. It also now provides an introduction to the phase plane and to different types of phase portraits. A valuable reference book for readers interested in exploring the technological and other applications of differential equations.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

Principles of Mathematical Analysis


Walter Rudin - 1964
    The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

The Pythagorean Sourcebook and Library


Kenneth Sylvan Guthrie - 1919
    The material of this book is indispensable for anyone who wishes to understand the real spiritual roots of Western civilization.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.