Book picks similar to
The Cosmic Web: Mysterious Architecture of the Universe by J. Richard Gott III
science
non-fiction
physics
astronomy
The First Three Minutes: A Modern View of the Origin of the Universe
Steven Weinberg - 1977
But almost everything about it, from the elements that forged stars, planets, and lifeforms, to the fundamental forces of physics, can be traced back to what happened in just the first three minutes of its life.In this book, Nobel Laureate Steven Weinberg describes in wonderful detail what happened in these first three minutes. It is an exhilarating journey that begins with the Planck Epoch - the earliest period of time in the history of the universe - and goes through Einstein's Theory of Relativity, the Hubble Red Shift, and the detection of the Cosmic Microwave Background. These incredible discoveries all form the foundation for what we now understand as the "standard model" of the origin of the universe. The First Three Minutes examines not only what this model looks like, but also tells the exciting story of the bold thinkers who put it together.Clearly and accessibly written, The First Three Minutes is a modern-day classic, an unsurpassed explanation of where it is we really come from.
The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality
Richard Panek - 2010
In the past few years, a handful of scientists have been in a race to explain a disturbing aspect of our universe: only 4 percent of it consists of the matter that makes up you, me, our books, and every planet, star, and galaxy. The rest—96 percent of the universe—is completely unknown. Richard Panek tells the dramatic story of how scientists reached this conclusion, and what they’re doing to find this "dark" matter and an even more bizarre substance called dark energy. Based on in-depth, on-site reporting and hundreds of interviews—with everyone from Berkeley’s feisty Saul Perlmutter and Johns Hopkins’s meticulous Adam Riess to the quietly revolutionary Vera Rubin—the book offers an intimate portrait of the bitter rivalries and fruitful collaborations, the eureka moments and blind alleys, that have fueled their search, redefined science, and reinvented the universe.
Dark Cosmos: In Search of Our Universe's Missing Mass and Energy
Dan Hooper - 2006
Beginning with the publication of Albert Einstein's theory of relativity, through the wild revolution of quantum mechanics, and up until the physics of the modern day (including the astonishing revelation, in 1998, that the Universe is not only expanding, but doing so at an ever-quickening pace), much of what physicists have seen in our Universe suggests that much of our Universe is unseen—that we live in a dark cosmos.Everyone knows that there are things no one can see—the air you're breathing, for example, or, to be more exotic, a black hole. But what everyone does not know is that what we can see—a book, a cat, or our planet—makes up only 5 percent of the Universe. The rest—fully 95 percent—is totally invisible to us; its presence discernible only by the weak effects it has on visible matter around it.This invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together, while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would have ever expected: to discover what makes up our dark cosmos.
The Edge of Physics: A Journey to Earth's Extremes to Unlock the Secrets of the Universe
Anil Ananthaswamy - 2010
Why is the universe expanding at an ever faster rate? What is the nature of the "dark matter" that makes up almost a quarter of the universe? Why does the universe appear fine-tuned for life? Are there others besides our own? Ananthaswamy soon finds himself at the ends of the earth--in remote and sometimes dangerous places. Take the Atacama Desert in the Chilean Andes, one of the coldest, driest places on the planet, where not even a blade of grass can survive. Its spectacularly clear skies and dry atmosphere allow astronomers to gather brilliant images of galaxies billions of light-years away. Ananthaswamy takes us inside the European Southern Observatory's Very Large Telescope on Mount Paranal, where four massive domes open to the sky each night "like dragons waking up."He also takes us deep inside an abandoned iron mine in Minnesota, where half-mile-thick rock shields physicists as they hunt for elusive dark matter particles. And to the East Antarctic Ice Sheet, where engineers are drilling 1.5 miles into the clearest ice on the planet. They're building the world's largest neutrino detector, which could finally help reconcile quantum physics with Einstein's theory of general relativity.The stories of the people who work at these and other dramatic research sites--from Lake Baikal in Siberia to the Indian Astronomical Observatory in the Himalayas to the subterranean lair of the Large Hadron Collider--make for a compelling new portrait of the universe and our quest to understand it. An atmospheric, engaging, and illuminating read, "The Edge of Physics" depicts science as a human process, bringing cosmology back down to earth in the most vivid terms.
The Eerie Silence: Renewing Our Search for Alien Intelligence
Paul C.W. Davies - 2010
Thus began one of the boldest scientific projects in history, the Search for Extraterrestrial Intelligence (SETI). But after a half century of scanning the skies, astronomers have little to report but an eerie silence—eerie because many scientists are convinced that the universe is teeming with life. The problem, argues the leading physicist-astrobiologist Paul Davies, is that we’ve been looking in the wrong place, at the wrong time & in the wrong way. Davies should know. For more than three decades, he's been closely involved with SETI & now chairs its Post-Detection Taskgroup, charged with deciding what to do if we’re confronted with evidence of alien intelligence. In this extraordinary book, he shows how SETI has lost its edge & offers a new exciting road map for the future. Davies believes our search so far has been overly anthropocentric: we tend to assume an alien species will look, think & behave like us. He argues that we need to be far more expansive in our efforts, & in this book he completely redefines the search, challenging existing ideas of what form an alien intelligence might take, how it might try to communicate with us & how we should respond if it does. A provocative & mind-expanding journey, The Eerie Silence will thrill fans of science & science fiction alike.
Gravity: How the Weakest Force in the Universe Shaped Our Lives
Brian Clegg - 2012
Of these, gravity may the most obvious, but it is also the most mysterious. Newton managed to predict the force of gravity but couldn't explain how it worked at a distance. Einstein picked up on the simple premise that gravity and acceleration are interchangeable to devise his mind-bending general relativity, showing how matter warps space and time. Not only did this explain how gravity worked – and how apparently simple gravitation has four separate components – but it predicted everything from black holes to gravity's effect on time. Whether it's the reality of anti-gravity or the unexpected discovery that a ball and a laser beam drop at the same rate, gravity is the force that fascinates.
The Theory of Everything: The Origin and Fate of the Universe
Stephen Hawking - 2002
"The Theory of Everything" presents the most complex theories, both past and present, of physics; yet it remains clear and accessible. It will enlighten readers and expose them to the rich history of scientific thought and the complexities of the universe in which we live.
Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe
Jim Baggott - 2019
The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discoveryof gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs.The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons andforce-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs.But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever hadone universe. What we need is a quantum theory of gravity.Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes the road less travelled: anapproach which takes relativity as its starting point, and leads to a structure called Loop Quantum Gravity. Baggott tells the story through the careers and pioneering work of two of the theory's most prominent contributors, Lee Smolin and Carlo Rovelli.
Our Mathematical Universe: My Quest for the Ultimate Nature of Reality
Max Tegmark - 2012
Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index
Until the End of Time: Mind, Matter, and Our Search for Meaning in an Evolving Universe
Brian Greene - 2020
Someday, we know, we will all die. And, we know, so too will the universe itself.Until the End of Time is Brian Greene's breathtaking new exploration of the cosmos and our quest to understand it. Greene takes us on a journey across time, from our most refined understanding of the universe's beginning, to the closest science can take us to the very end. He explores how life and mind emerged from the initial chaos, and how our minds, in coming to understand their own impermanence, seek in different ways to give meaning to experience: in story, myth, religion, creative expression, science, the quest for truth, and our longing for the timeless, or eternal. Through a series of nested stories that explain distinct but interwoven layers of reality-from the quantum mechanics to consciousness to black holes-Greene provides us with a clearer sense of how we came to be, a finer picture of where we are now, and a firmer understanding of where we are headed.Yet all this understanding, which arose with the emergence of life, will dissolve with its conclusion. Which leaves us with one realization: during our brief moment in the sun, we are tasked with the charge of finding our own meaning.Let us embark.
Ripples in Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy
Govert Schilling - 2017
Einstein predicted these tiny ripples in the fabric of spacetime nearly a hundred years ago, but they were never perceived directly until now. Decades in the making, this momentous discovery has given scientists a new understanding of the cataclysmic events that shape the universe and a new confirmation of Einstein's theory of general relativity. Ripples in Spacetime is an engaging account of the international effort to complete Einstein's project, capture his elusive ripples, and launch an era of gravitational-wave astronomy that promises to explain, more vividly than ever before, our universe's structure and origin.The quest for gravitational waves involved years of risky research and many personal and professional struggles that threatened to derail one of the world's largest scientific endeavors. Govert Schilling takes readers to sites where these stories unfolded--including Japan's KAGRA detector, Chile's Atacama Cosmology Telescope, the South Pole's BICEP detectors, and the United States' LIGO labs. He explains the seeming impossibility of developing technologies sensitive enough to detect waves from two colliding black holes in the very distant universe, and describes the astounding precision of the LIGO detectors. Along the way Schilling clarifies concepts such as general relativity, neutron stars, and the big bang using language that readers with little scientific background can grasp.Ripples in Spacetime provides a window into the next frontiers of astronomy, weaving far-reaching predictions and discoveries into a gripping story of human ambition and perseverance.
Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Universe
Lisa Randall - 2015
Weaving together the cosmos' history and our own in an expanding intellectual adventure story, Dark Matter and the Dinosaurs takes us from the mysteries of dark matter and our cosmic environment to the conditions for life on Earth.Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter that is embedded in the plane of the Milky Way. Her research challenges the usual assumptions about the simple nature of dark matter and demonstrates how scientists formulate and establish new ideas. In a sense, it might have been dark matter that killed the dinosaurs.With her unique and wide-ranging perspective, Randall connects dark matter to the history of the world in the broadest terms. Bringing in pop culture and social and political viewpoints, she shares with us the latest findings—established and speculative—regarding dark matter, the cosmos, the galaxy, asteroids, comets, and impacts, as well as life's development and extinctions. Randall makes clear how connected the planet is to the makeup of the Universe, but also how fragile our place in the Universe, which evolved over billions of years, might be.In this brilliant and fresh exploration of our cosmic environment, Professor Randall explains the underlying science of our world in the breathtaking tale of a Universe in which the small and the large, the visible and the hidden are intimately related. Dark Matter and the Dinosaurs illuminates the deep relationships that are critical to our world as well as the astonishing beauty of the structures and connections that surround us. It's impossible to read this book and look at either Earth or sky again in the same way.
Seven Brief Lessons on Physics
Carlo Rovelli - 2014
A playful, entertaining, and mind-bending introduction to modern physics, it's already a major bestseller in Italy and the United Kingdom. Carlo Rovelli offers surprising—and surprisingly easy to grasp—explanations of general relativity, quantum mechanics, elementary particles, gravity, black holes, the complex architecture of the universe, and the role humans play in this weird and wonderful world. He takes us to the frontiers of our knowledge: to the most minute reaches of the fabric of space, back to the origins of the cosmos, and into the workings of our minds. “Here, on the edge of what we know, in contact with the ocean of the unknown, shines the mystery and the beauty of the world,” Rovelli writes. “And it’s breathtaking.”
Seeing in the Dark: How Amateur Astronomers Are Discovering the Wonders of the Universe
Timothy Ferris - 2002
He recounts his own experiences as an enthralled lifelong amateur astronomer and reports from around the globe -- from England and Italy to the Florida Keys and the Chilean Andes -- on the revolution that's putting millions in touch with the night sky. In addition, Ferris offers an authoritative and engaging report on what's out there to be seen -- what Saturn, the Ring nebula, the Silver Coin galaxy, and the Virgo supercluster really are and how to find them. The appendix includes star charts, observing lists, and a guide on how to get involved in astronomy. Ferris takes us inside a major revolution sweeping astronomy, as lone amateur astronomers, in global networks linked by the Internet, make important discoveries that are the envy of the professionals. His ability to describe the wonders of the universe is simply magical, and his enthusiasm for his subject is irresistible.
13.8: The Quest to Find the True Age of the Universe and the Theory of Everything
John Gribbin - 2015
The general theory of relativity describes the behavior of very large things, and quantum theory the behavior of very small things. In this landmark book, John Gribbin—one of the best-known science writers of the past thirty years—presents his own version of the Holy Grail of physics, the search that has been going on for decades to find a unified “Theory of Everything” that combines these ideas into one mathematical package, a single equation that could be printed on a T-shirt, containing the answer to life, the Universe, and everything. With his inimitable mixture of science, history, and biography, Gribbin shows how—despite skepticism among many physicists—these two great theories are very compatible, and point to a deep truth about the nature of our existence. The answer lies, intriguingly, with the age of the universe: 13.8 billion years.