Book picks similar to
Practical Natural Language Processing: A Comprehensive Guide to Building Real-world NLP systems by Sowmya V
computer-science
machine-learning
nlp
non-fiction
Modern Information Retrieval
Ricardo Baeza-Yates - 1999
The timely provision of relevant information with minimal 'noise' is critical to modern society and this is what information retrieval (IR) is all about. It is a dynamic subject, with current changes driven by the expansion of the World Wide Web, the advent of modern and inexpensive graphical user interfaces and the development of reliable and low-cost mass storage devices. Modern Information Retrieval discusses all these changes in great detail and can be used for a first course on IR as well as graduate courses on the topic.The organization of the book, which includes a comprehensive glossary, allows the reader to either obtain a broad overview or detailed knowledge of all the key topics in modern IR. The heart of the book is the nine chapters written by Baeza-Yates and Ribeiro-Neto, two leading exponents in the field. For those wishing to delve deeper into key areas there are further state-of-the-art ch
AWS Lambda: A Guide to Serverless Microservices
Matthew Fuller - 2016
Lambda enables users to develop code that executes in response to events - API calls, file uploads, schedules, etc - and upload it without worrying about managing traditional server metrics such as disk space, memory, or CPU usage. With its "per execution" cost model, Lambda can enable organizations to save hundreds or thousands of dollars on computing costs. With in-depth walkthroughs, large screenshots, and complete code samples, the reader is guided through the step-by-step process of creating new functions, responding to infrastructure events, developing API backends, executing code at specified intervals, and much more. Introduction to AWS Computing Evolution of the Computing Workload Lambda Background The Internals The Basics Functions Languages Resource Allocation Getting Set Up Hello World Uploading the Function Working with Events AWS Events Custom Events The Context Object Properties Methods Roles and Permissions Policies Trust Relationships Console Popups Cross Account Access Dependencies and Resources Node Modules OS Dependencies OS Resources OS Commands Logging Searching Logs Testing Your Function Lambda Console Tests Third-Party Testing Libraries Simulating Context Hello S3 Object The Bucket The Role The Code The Event The Trigger Testing When Lambda Isn’t the Answer Host Access Fine-Tuned Configuration Security Long-Running Tasks Where Lambda Excels AWS Event-Driven Tasks Scheduled Events (Cron) Offloading Heavy Processing API Endpoints Infrequently Used Services Real-World Use Cases S3 Image Processing Shutting Down Untagged Instances Triggering CodeDeploy with New S3 Uploads Processing Inbound Email Enforcing Security Policies Detecting Expiring Certificates Utilizing the AWS API Execution Environment The Code Pipeline Cold vs. Hot Execution What is Saved in Memory Scaling and Container Reuse From Development to Deployment Application Design Development Patterns Testing Deployment Monitoring Versioning and Aliasing Costs Short Executions Long-Running Processes High-Memory Applications Free Tier Calculating Pricing CloudFormation Reusable Template with Minimum Permissions Cross Account Access CloudWatch Alerts AWS API Gateway API Gateway Event Creating the Lambda Function Creating a New API, Resource, and Method Initial Configuration Mapping Templates Adding a Query String Using HTTP Request Information Within Lambda Deploying the API Additional Use Cases Lambda Competitors Iron.io StackHut WebTask.io Existing Cloud Providers The Future of Lambda More Resources Conclusion
Peopleware: Productive Projects and Teams
Tom DeMarco - 1987
The answers aren't easy -- just incredibly successful.
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Eric Siegel - 2013
Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)
Jiawei Han - 2000
Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site
Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin - 2007
But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.
Pro Git
Scott Chacon - 2009
It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.
Programming in Go: Creating Applications for the 21st Century
Mark Summerfield - 2012
With this guide, pioneering Go programmer Mark Summerfield shows how to write code that takes full advantage of Go's breakthrough features and idioms. Both a tutorial and a language reference, "Programming in Go" brings together all the knowledge you need to evaluate Go, think in Go, and write high-performance software with Go. Summerfield presents multiple idiom comparisons showing exactly how Go improves upon older languages, calling special attention to Go's key innovations. Along the way, he explains everything from the absolute basics through Go's lock-free channel-based concurrency and its flexible and unusual duck-typing type-safe approach to object-orientation. Throughout, Summerfield's approach is thoroughly practical. Each chapter offers multiple live code examples designed to encourage experimentation and help you quickly develop mastery. Wherever possible, complete programs and packages are presented to provide realistic use cases, as well as exercises. Coverage includes:-- Quickly getting and installing Go, and building and running Go programs -- Exploring Go's syntax, features, and extensive standard library -- Programming Boolean values, expressions, and numeric types -- Creating, comparing, indexing, slicing, and formatting strings -- Understanding Go's highly efficient built-in collection types: slices and maps -- Using Go as a procedural programming language -- Discovering Go's unusual and flexible approach to object orientation -- Mastering Go's unique, simple, and natural approach to fine-grained concurrency -- Reading and writing binary, text, JSON, and XML files -- Importing and using standard library packages, custom packages, and third-party packages -- Creating, documenting, unit testing, and benchmarking custom packages
Building Machine Learning Systems with Python
Willi Richert - 2013
Building Cloud Apps with Microsoft Azure: Best Practices for DevOps, Data Storage, High Availability, and More (Developer Reference)
Scott Guthrie - 2014
The patterns apply to the development process as well as to architecture and coding practices. The content is based on a presentation developed by Scott Guthrie and delivered by him at the Norwegian Developers Conference (NDC) in June of 2013 (part 1, part 2), and at Microsoft Tech Ed Australia in September 2013 (part 1, part 2). Many others updated and augmented the content while transitioning it from video to written form. Who should read this book Developers who are curious about developing for the cloud, are considering a move to the cloud, or are new to cloud development will find here a concise overview of the most important concepts and practices they need to know. The concepts are illustrated with concrete examples, and each chapter includes links to other resources that provide more in-depth information. The examples and the links to additional resources are for Microsoft frameworks and services, but the principles illustrated apply to other web development frameworks and cloud environments as well. Developers who are already developing for the cloud may find ideas here that will help make them more successful. Each chapter in the series can be read independently, so you can pick and choose topics that you're interested in. Anyone who watched Scott Guthrie's "Building Real World Cloud Apps with Windows Azure" presentation and wants more details and updated information will find that here. Assumptions This ebook expects that you have experience developing web applications by using Visual Studio and ASP.NET. Familiarity with C# would be helpful in places.
Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems
Bernard Marr - 2019
Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
Cracking the Coding Interview: 150 Programming Questions and Solutions
Gayle Laakmann McDowell - 2008
This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Ethics and Data Science
Mike Loukides - 2018
Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day.
To help you consider all of possible ramifications of your work on data projects, this report includes:
A sample checklist that you can adapt for your own procedures
Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences
Suggestions for building ethics into your data-driven culture
Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.
Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement
Eric Redmond - 2012
As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.