Book picks similar to
Philosophy of Mathematics: Selected Readings by Paul Benacerraf
philosophy
mathematics
math
philosophy-of-mathematics
The German Genius: Europe's Third Renaissance, the Second Scientific Revolution, and the Twentieth Century
Peter Watson - 2010
From Bach, Goethe, and Schopenhauer to Nietzsche, Freud, and Einstein, from the arts and humanities to science and philosophy, The German Genius is a lively and accessible review of over 250 years of German intellectual history. In the process, it explains the devastating effects of World War II, which transformed a vibrant and brilliantly artistic culture into a vehicle of warfare and destruction, and it shows how the German culture advanced in the war’s aftermath.
Philosophy of Mind: A Contemporary Introduction
John Heil - 1998
John Heil introduces and discusses the major topics in succinct, user-friendly, self-contained chapters:* Cartesian dualism* Descartes's legacy* non-Cartesian dualism* behaviorism* the identity theory* functionalism* the representational theory of mind* qualia* radical interpretation* the intentional stance* eliminativism* property dualism* mind and metaphysics* the mind's place in natureThis revised and updated edition includes expanded chapters on eliminativism, qualia, and the representational theory of mind, and an entirely new chapter on property dualism. There are annotated suggestions for further reading at the end of each chapter, updated to include recent material and internet resources.
Epistemology: An Anthology
Ernest SosaRichard Foley - 1999
It is ideal as a reader for all courses in epistemology.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
Asimov on Numbers
Isaac Asimov - 1978
From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.
The Scientific Image
Bas C. Van Fraassen - 1980
In this book van Fraassen develops an alternative to scientific realism by constructing and evaluating three mutually reinforcing theories.
How to Study for a Mathematics Degree
Lara Alcock - 2012
Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining.This no-nonsense book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time. Part 1 provides an in-depth discussion of advanced mathematical thinking, and explains how a student will need to adapt and extend their existing skills in order to develop a good understanding of undergraduate mathematics. Part 2 covers study skills as these relate to the demands of a mathematics degree. It suggests practical approaches to learning from lectures and to studying for examinations while also allowing time for a fulfilling all-round university experience.The first subject-specific guide for students, this friendly, practical text will be essential reading for anyone studying mathematics at university.
Creative Evolution
Henri Bergson - 1907
If...we could ask and it could reply, it would give up to us the most intimate secrets of life. -from Chapter II Anticipating not only modern scientific theories of psychology but also those of cosmology, this astonishing book sets out a impressive goal for itself: to reconcile human biology with a theory of consciousness. First published in France in 1907, and translated into English in 1911, this work of wonder was esteemed at the time in scientific circles and in the popular culture alike for its profound explorations of perception and memory and its surprising conclusions about the nature and value of art. Contending that intuition is deeper than intellect and that the real consequence of evolution is a mental freedom to grow, to change, to seek and create novelty, Bergson reinvigorated the theory of evolution by refusing to see it as merely mechanistic. His expansion on Darwin remains one of the most original and important philosophical arguments for a scientific inquiry still under fire today. French philosopher HENRI BERGSON (1859-1941) was born in Paris. Among his works are Matter and Memory (1896), An Introduction to Metaphysics (1903), and The Two Sources of Morality and Religion (1932). He was awarded the Nobel Prize for Literature in 1927.
The Number Sense: How the Mind Creates Mathematics
Stanislas Dehaene - 1996
Describing experiments that show that human infants have a rudimentary number sense, Stanislas Dehaene suggests that this sense is as basic as our perception of color, and that it is wired into the brain. Dehaene shows that it was the invention of symbolic systems of numerals that started us on the climb to higher mathematics. A fascinating look at the crossroads where numbers and neurons intersect, The Number Sense offers an intriguing tour of how the structure of the brain shapes our mathematical abilities, and how our mathematics opens up a window on the human mind.
The Algorithm Design Manual
Steven S. Skiena - 1997
Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Six Easy Pieces: Essentials of Physics By Its Most Brilliant Teacher
Richard P. Feynman - 1995
This set couples a book containing the six easiest chapters from Richard P. Feynman's landmark work, Lectures on Physics—specifically designed for the general, non-scientist reader—with the actual recordings of the late, great physicist delivering the lectures on which the chapters are based. Nobel Laureate Feynman gave these lectures just once, to a group of Caltech undergraduates in 1961 and 1962, and these newly released recordings allow you to experience one of the Twentieth Century's greatest minds—as if you were right there in the classroom.
Logic: An Introduction to Elementary Logic
Wilfrid Hodges - 1980
From this starting point, and assuming no previous knowledge of logic, Wilfrid Hodges takes the reader through the whole gamut of logical expressions in a simple and lively way. Readers who are more mathematically adventurous will find optional sections introducing rather more challenging material. 'A lively and stimulating book' Philosophy
Fear of Knowledge: Against Relativism and Constructivism
Paul Boghossian - 2006
In his long-awaited first book, Paul Boghossian critically examines such views and exposes their fundamental flaws.Boghossian focuses on three different ways of reading the claim that knowledge is socially constructed--one as a thesis about truth and two about justification. And he rejects all three. The intuitive, common-sense view is that there is a way the world is that is independent of human opinion; and that we are capable of arriving at beliefs about how it is that are objectively reasonable, binding on anyone capable of appreciating the relevant evidence regardless of their social or cultural perspective. Difficult as these notions may be, it is a mistake to think that philosophy has uncovered powerful reasons for rejecting them.This short, lucid, witty book shows that philosophy provides rock-solid support for common sense against the relativists. It will prove provocative reading throughout the discipline and beyond.
The Information: A History, a Theory, a Flood
James Gleick - 2011
The story of information begins in a time profoundly unlike our own, when every thought and utterance vanishes as soon as it is born. From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. He provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself. And then the information age arrives. Citizens of this world become experts willy-nilly: aficionados of bits and bytes. And we sometimes feel we are drowning, swept by a deluge of signs and signals, news and images, blogs and tweets. The Information is the story of how we got here and where we are heading.
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.