Book picks similar to
Concurrent Programming on Windows by Joe Duffy


programming
computer-science
software-engineering
technical

Team Geek: A Software Developer's Guide to Working Well with Others


Brian W. Fitzpatrick - 2012
    And in a perfect world, those who produce the best code are the most successful. But in our perfectly messy world, success also depends on how you work with people to get your job done.In this highly entertaining book, Brian Fitzpatrick and Ben Collins-Sussman cover basic patterns and anti-patterns for working with other people, teams, and users while trying to develop software. It's valuable information from two respected software engineers whose popular video series, "Working with Poisonous People," has attracted hundreds of thousands of viewers.You'll learn how to deal with imperfect people--those irrational and unpredictable beings--in the course of your work. And you'll discover why playing well with others is at least as important as having great technical skills. By internalizing the techniques in this book, you'll get more software written, be more influential, be happier in your career.

Fundamentals of Software Architecture: An Engineering Approach


Mark Richards - 2020
    Until now. This practical guide provides the first comprehensive overview of software architecture's many aspects. You'll examine architectural characteristics, architectural patterns, component determination, diagramming and presenting architecture, evolutionary architecture, and many other topics.Authors Neal Ford and Mark Richards help you learn through examples in a variety of popular programming languages, such as Java, C#, JavaScript, and others. You'll focus on architecture principles with examples that apply across all technology stacks.

Just for Fun: The Story of an Accidental Revolutionary


Linus Torvalds - 2001
    Then he wrote a groundbreaking operating system and distributed it via the Internet -- for free. Today Torvalds is an international folk hero. And his creation LINUX is used by over 12 million people as well as by companies such as IBM.Now, in a narrative that zips along with the speed of e-mail, Torvalds gives a history of his renegade software while candidly revealing the quirky mind of a genius. The result is an engrossing portrayal of a man with a revolutionary vision, who challenges our values and may change our world.

C# in Depth


Jon Skeet - 2008
    With the many upgraded features, C# is more expressive than ever. However, an in depth understanding is required to get the most out of the language.C# in Depth, Second Edition is a thoroughly revised, up-to-date book that covers the new features of C# 4 as well as Code Contracts. In it, you'll see the subtleties of C# programming in action, learning how to work with high-value features that you'll be glad to have in your toolkit. The book helps readers avoid hidden pitfalls of C# programming by understanding "behind the scenes" issues.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

Think Complexity: Complexity Science and Computational Modeling


Allen B. Downey - 2009
    Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers

The New Turing Omnibus: 66 Excursions In Computer Science


A.K. Dewdney - 1989
    K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

The Little Book on CoffeeScript


Alex MacCaw - 2012
    Through example code, this guide demonstrates how CoffeeScript abstracts JavaScript, providing syntactical sugar and preventing many common errors. You’ll learn CoffeeScript’s syntax and idioms step by step, from basic variables and functions to complex comprehensions and classes.Written by Alex MacCaw, author of JavaScript Web Applications (O’Reilly), with contributions from CoffeeScript creator Jeremy Ashkenas, this book quickly teaches you best practices for using this language—not just on the client side, but for server-side applications as well. It’s time to take a ride with the little language that could.Discover how CoffeeScript’s syntax differs from JavaScriptLearn about features such as array comprehensions, destructuring assignments, and classesExplore CoffeeScript idioms and compare them to their JavaScript counterpartsCompile CoffeeScript files in static sites with the Cake build systemUse CommonJS modules to structure and deploy CoffeeScript client-side applicationsExamine JavaScript’s bad parts—including features CoffeeScript was able to fix

Understanding the Linux Kernel


Daniel P. Bovet - 2000
    The kernel handles all interactions between the CPU and the external world, and determines which programs will share processor time, in what order. It manages limited memory so well that hundreds of processes can share the system efficiently, and expertly organizes data transfers so that the CPU isn't kept waiting any longer than necessary for the relatively slow disks.The third edition of Understanding the Linux Kernel takes you on a guided tour of the most significant data structures, algorithms, and programming tricks used in the kernel. Probing beyond superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Important Intel-specific features are discussed. Relevant segments of code are dissected line by line. But the book covers more than just the functioning of the code; it explains the theoretical underpinnings of why Linux does things the way it does.This edition of the book covers Version 2.6, which has seen significant changes to nearly every kernel subsystem, particularly in the areas of memory management and block devices. The book focuses on the following topics:Memory management, including file buffering, process swapping, and Direct memory Access (DMA)The Virtual Filesystem layer and the Second and Third Extended FilesystemsProcess creation and schedulingSignals, interrupts, and the essential interfaces to device driversTimingSynchronization within the kernelInterprocess Communication (IPC)Program executionUnderstanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more than just an academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll see how it meets the challenge of providing good system response during process scheduling, file access, and memory management in a wide variety of environments. This book will help you make the most of your Linux system.

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

Introducing Go: Build Reliable, Scalable Programs


Caleb Doxsey - 2016
    Author Caleb Doxsey covers the language’s core features with step-by-step instructions and exercises in each chapter to help you practice what you learn.Go is a general-purpose programming language with a clean syntax and advanced features, including concurrency. This book provides the one-on-one support you need to get started with the language, with short, easily digestible chapters that build on one another. By the time you finish this book, not only will you be able to write real Go programs, you'll be ready to tackle advanced techniques.* Jump into Go basics, including data types, variables, and control structures* Learn complex types, such as slices, functions, structs, and interfaces* Explore Go’s core library and learn how to create your own package* Write tests for your code by using the language’s go test program* Learn how to run programs concurrently with goroutines and channels* Get suggestions to help you master the craft of programming

Write Great Code: Volume 1: Understanding the Machine


Randall Hyde - 2004
    A dirty little secret assembly language programmers rarely admit to, however, is that what you really need to learn is machine organization, not assembly language programming. Write Great Code Vol I, the first in a series from assembly language expert Randall Hyde, dives right into machine organization without the extra overhead of learning assembly language programming at the same time. And since Write Great Code Vol I concentrates on the machine organization, not assembly language, the reader will learn in greater depth those subjects that are language-independent and of concern to a high level language programmer. Write Great Code Vol I will help programmers make wiser choices with respect to programming statements and data types when writing software, no matter which language they use.

Zero Bugs and Program Faster


Kate Thompson - 2016
     The author spent two years researching every bug avoidance technique she could find. This book contains the best of them. If you want to program faster, with fewer bugs, and write more secure code, buy this book!

Ray Tracing in One Weekend (Ray Tracing Minibooks Book 1)


Peter Shirley - 2016
    Each mini-chapter adds one feature to the ray tracer, and by the end the reader can produce the image on the book cover. Details of basic ray tracing code architecture and C++ classes are given.