Book picks similar to
Introductory Chemical Engineering Thermodynamics by J. Richard Elliot
chemical-engineering
textbooks
myversion
office
Advanced Engineering Mathematics
K.A. Stroud - 2003
You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.
Elementary Principles of Chemical Processes [With CDROM]
Richard M. Felder - 1978
It provides a realistic, informative, and positive introduction to the practice of chemical engineering.
Materials Science and Engineering: An Introduction
William D. Callister Jr. - 1985
For examples see chapters 3, 4, 5 and 9. * Mechanical property coverage The Sixth Edition maintains its extensive, introductory level coverage of mechanical properties and failure--the most important materials considerations for many engineers. For examples see chapters 6, 7, & 8. * A picture is worth 1000 words! The Sixth Edition judiciously and extensively makes use of illustrations and photographs. The approximate 500 figures include a large number of photographs that show the microstructure of various materials (e.g., Figures 9.12, 10.8, 13.12, 14.15 and 16.5). * Current and up-to-date Students are presented with the latest developments in Material Science and Engineering. Such up-to-date content includes advanced ceramic and polymeric materials, composites, high-energy hard magnetic materials, and optical fibers in communications. For examples see sections 13.7, 15.19, 16.8, 20.9, and 21.14. * Why study These sections at the beginning of each chapter provide the student with reasons why it is important to learn the material covered in the chapter. * Learning objectives A brief list of learning objectives for each chapter states the key learning concepts for the chapter. * Resources to facilitate the materials selection process. Appendix B, which contains 11 properties for a set of approximately 100 materials, is included which be used in materials selection problems. An additional resource, Appendix C, contains the prices for all materials listed in Appendix B. * The text is packaged with a CD-ROM that contains 1) interactive software modules to enhance visualization of three-dimensional objects, 2) additional coverage of select topics, and 3) complete solutions to selected problems from the text in order to assist students in mastering problem-solving.
Anatomy & Physiology
Boundless - 2013
Boundless works with subject matter experts to select the best open educational resources available on the web, review the content for quality, and create introductory, college-level textbooks designed to meet the study needs of university students.<br><br>This textbook covers:<br><br><b>Human Anatomy and Physiology Introduction</b> -- Anatomy and Physiology Overview, Life, Homeostasis, Anatomical Terms, Clinical Cases<br><br><b>General Chemistry</b> -- Matter and Energy, Element Properties: Atomic structure, Chemical Bonds, Chemical Reactions, Inorganic Compounds, Organic Compounds<br><br><b>Cellular Structure and Function</b> -- the study of cells, Cell membranes and the fluid mosaic model, Transport across membranes, How reception works in cell signaling, Nucleus and Ribosomes, Organelles, The Cytoskeleton, External cellular components, Cell division: process and importance, The cell cycle, Transcription and translation, RNA processing, Translation to a polypeptide, Transcription, Apoptosis signals an orderly cell death<br><br><b>Tissues</b> -- Epithelial Tissue, Cell Junctions, Clinical Cases, Tissue Repair, Tissue Development, Cancer, Connective Tissue, Membranes, Nervous Tissue<br><br><b>The Integumentary System</b> -- The Skin, Accessory Structures of the Skin, Functions of the Integumentary System, Wound Healing, Integumentary System Development, Skin Disorders, Imbalances, Diseases, and Clinical Cases<br><br><b>Skeletal Tissue</b> -- Cartilage, Bone Classification, Bone Formation, Bone and Calcium, Bone Development, Bone Diseases, Disorders, Imbalances, and Clinical Cases<br><br><b>The Skeletal System</b> -- Overview of the Musculoskeletal system, Divisions of the Skeletal System, The Axial Skeleton, Skull, Hyoid Bone, Vertebral Column, Thorax, Clinical Cases of the Axial Skeleton, The Appendicular Skeleton, The Pectoral (Shoulder) Girdle, Upper Limb, The Pelvic (Hip) Girdle, Lower Limb, Skeletal System Development, Clinical Cases of the Appendicular Skeleton<br><br><b>Joints</b> -- Classification of Joints, Synovial Joints, Joint Development, Clinical Cases<br><br><b>Muscle Tissue</b> -- Overview of Muscle Tissue, Skeletal Muscle, Control of Muscle Tension, Muscle Metabolism, Exercise and Skeletal Muscle Tissue, Smooth Muscle, Clinical Cases: Muscle Disorders, Development of Muscle<br><br><b>The Muscular System</b> -- Overview of the Muscular System, Head And Neck Muscles, Trunk Muscles, Muscles of the Upper Limb, Muscles of the Lower Limb, Clinical Cases and Muscular System Disorders<br><br><b>Nervous Tissue</b> -- Overview of the Nervous System, Neuroglia, Neurons, Collections of Nervous Tissue, Neurophysiology<br><br><b>Central Nervous System (CNS)</b> -- The Brain, Consciousness, Sleep, Language, and Memory, Protection of the Brain, Parts of The Brain Stem, The Cerebellum, The Diencephalon, Cerebral Cortex (or Cerebral Hemispheres), Functional Systems of the Cerebral Cortex, Development of the CNS, Brain Disorders and Clinical Cases, The Spinal Cord, Spinal Cord Anatomy, Disorders and Clinical Cases of the Spinal Cord<br><br><b>Peripheral Nervous System (PNS)</b> -- Sensation, Sensory Receptors, Somatosensory System, Nerves, Cranial Nerves, Spinal Nerves, Distribution of Spinal Nerves, Motor Activity, Motor Pathways, Reflexes, Pain, Development of the Nervous System, Disorders of Spinal Nerves and Clinical Cases<br><br><b>Autonomic Nervous System (ANS)</b> -- Autonomic Nervous System, ANS Anatomy, Physiology of ANS,
The Particles of the Universe
Jeff Yee - 2012
Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.
The Physics of NASCAR: How to Make Steel + Gas + Rubber = Speed
Diandra Leslie-Pelecky - 2008
In this fast-paced investigation into the adrenaline-pumping world of NASCAR, a physicist with a passion uncovers what happens when the rubber hits the road and 800- horsepower vehicles compete at 190 miles per hour only inches from one another. Diandra Leslie-Pelecky reveals how and why drivers trust the engineering and science their teams literally build around them not only to get them across the finish line in first place, but also to keep them alive. Professor Leslie-Pelecky is a physicist in love with the sport’s beauty and power and is uniquely qualified to explain exactly how physics translates into winning races. Based on the author’s extensive access to race shops, pit crews, crew chiefs and mechanics, this book traces the life cycle of a race car from behind the scenes at top race shops to the track. The Physics of NASCAR takes readers right into the ultra competitive world of NASCAR, from the champion driver’s hot seat behind the detachable steering wheel to the New Zealander nicknamed Kiwi in charge of shocks for the No. 19 car. Diandra Leslie-Pelecky tells her story in terms anyone who drives a car--and maybe occasionally looks under the hood--can understand. How do drivers walk away from serious crashes? How can two cars travel faster together than either car can on its own? How do you dress for a 1800°F gasoline fire? In simple yet detailed, high-octane prose, this is the ultimate thrill ride for armchair speed demons, auto science buffs, and NASCAR fans at every level of interest. Readers, start your engines.
Internal Combustion Engine Fundamentals.
John B. Heywood - 1988
An illustration program supports the concepts and theories discussed.
Thermodynamics
Enrico Fermi - 1956
Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).
Liquid Rules: The Delightful and Dangerous Substances That Flow Through Our Lives
Mark Miodownik - 2018
Structured around a plane journey that sees encounters with substances from water and glue to coffee and wine, Liquid Rules shows how these liquids can bring death and destruction as well as wonder and fascination.From László Bíró's revolutionary pen and Abraham Gesner's kerosene to cutting-edge research on self-repairing roads and liquid computers, Miodownik uses his winning formula of scientific storytelling to bring the everyday to life. He reveals why liquids can flow up a tree but down a hill, why oil is sticky, how waves can travel so far, and how to make the perfect cup of tea. Here are the secret lives of substances.
3,000 Solved Problems in Physics
Alvin Halpern - 1988
Contains 3000 solved problems with solutions, solved problems; an index to help you quickly locate the types of problems you want to solve; problems like those you'll find on your exams; techniques for choosing the correct approach to problems; and guidance toward efficient solutions.
Ultimate Questions: Thinking About Philosophy
Nils Ch. Rauhut - 2006
Vivid and engaging examples further enhance this up-to-date examination of the main problems in contemporary philosophy. It is written for professors teaching a problems-oriented course.
The Wright Brothers: A History From Beginning to End
Hourly History - 2017
Wilbur and Orville Wright have gone down in history as pioneers of flight and the inventors of the first airplane. This is the story of how their mechanical interest in printing presses and bicycles led them towards finding solutions to the conundrum of flight. Find out how their methodological research and innovative ideas set them apart from other inventors, and learn about the newspaper editors and scientists’ reactions to the Wright brothers’ achievement—the slow transformation of skepticism and disbelief to amazement. Inside you will read about... ✓ The House at 7 Hawthorne Street ✓ Flying on Two Wheels ✓ The Dream of Flight ✓ Three Gliders and a Windy Hill ✓ The First Flight ✓ Convincing the Skeptics ✓ The Dawn of a New Era And much more! This is not only the story of the success of two determined brothers from Dayton, but it is the story of a new chapter of history.
Principles of Electronic Communication Systems
Louis E. Frenzel - 1997
Requiring only basic algebra and trigonometry, the new edition is notable for its readability, learning features and numerous full-color photos and illustrations. A systems approach is used to cover state-of-the-art communications technologies, to best reflect current industry practice. This edition contains greatly expanded and updated material on the Internet, cell phones, and wireless technologies. Practical skills like testing and troubleshooting are integrated throughout. A brand-new Laboratory & Activities Manual provides both hands-on experiments and a variety of other activities, reflecting the variety of skills now needed by technicians. A new Online Learning Center web site is available, with a wealth of learning resources for students. An Instructor Productivity Center CD-ROM features solutions to all problems, PowerPoint lessons, and ExamView test banks for each chapter.