Book picks similar to
Annie Easley by M.M. Eboch
math
science
black-lives-matter
coding
Calculus
Dale E. Varberg - 1999
Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.
In Praise of Mathematics
Alain Badiou - 2015
Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.
The Myth of Artificial Intelligence: Why Computers Can't Think the Way We Do
Erik J. Larson - 2021
What hope do we have against superintelligent machines? But we aren't really on the path to developing intelligent machines. In fact, we don't even know where that path might be.A tech entrepreneur and pioneering research scientist working at the forefront of natural language processing, Erik Larson takes us on a tour of the landscape of AI to show how far we are from superintelligence, and what it would take to get there. Ever since Alan Turing, AI enthusiasts have equated artificial intelligence with human intelligence. This is a profound mistake. AI works on inductive reasoning, crunching data sets to predict outcomes. But humans don't correlate data sets: we make conjectures informed by context and experience. Human intelligence is a web of best guesses, given what we know about the world. We haven't a clue how to program this kind of intuitive reasoning, known as abduction. Yet it is the heart of common sense. That's why Alexa can't understand what you are asking, and why AI can only take us so far.Larson argues that AI hype is both bad science and bad for science. A culture of invention thrives on exploring unknowns, not overselling existing methods. Inductive AI will continue to improve at narrow tasks, but if we want to make real progress, we will need to start by more fully appreciating the only true intelligence we know--our own.
Sinatra: Up and Running
Alan Harris - 2011
With this concise book, you will quickly gain working knowledge of Sinatra and its minimalist approach to building both standalone and modular web applications.
Sinatra serves as a lightweight wrapper around Rack middleware, with syntax that maps closely to functions exposed by HTTP verbs, which makes it ideal for web services and APIs. If you have experience building applications with Ruby, you’ll quickly learn language fundamentals and see under-the-hood techniques, with the help of several practical examples. Then you’ll get hands-on experience with Sinatra by building your own blog engine.
Learn Sinatra’s core concepts, and get started by building a simple application
Create views, manage sessions, and work with Sinatra route definitions
Become familiar with the language’s internals, and take a closer look at Rack
Use different subclass methods for building flexible and robust architectures
Put Sinatra to work: build a blog that takes advantage of service hooks provided by the GitHub API
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
Stay Away from my ER and other fun bits of wisdom: Wobbling between humor and heartbreak
Rada Jones - 2020
You can’t fathom the weirdness– unless you’re one of the ER aliens. If you are, buy a dozen copies to give away: to your family, your neighbors, and the PTA. They’ll learn things you never had the heart to tell them, but they should know, like how it's like to work in the ER, the deviousness of shampoo bottles and the dangers of frying bacon naked.
Real World OCaml: Functional programming for the masses
Yaron Minsky - 2013
Through the book’s many examples, you’ll quickly learn how OCaml stands out as a tool for writing fast, succinct, and readable systems code.Real World OCaml takes you through the concepts of the language at a brisk pace, and then helps you explore the tools and techniques that make OCaml an effective and practical tool. In the book’s third section, you’ll delve deep into the details of the compiler toolchain and OCaml’s simple and efficient runtime system.Learn the foundations of the language, such as higher-order functions, algebraic data types, and modulesExplore advanced features such as functors, first-class modules, and objectsLeverage Core, a comprehensive general-purpose standard library for OCamlDesign effective and reusable libraries, making the most of OCaml’s approach to abstraction and modularityTackle practical programming problems from command-line parsing to asynchronous network programmingExamine profiling and interactive debugging techniques with tools such as GNU gdb
Calculus with Analytic Geometry [with Graphing Calculator Supplement]
Howard Anton
Algorithms to Live By: The Computer Science of Human Decisions
Brian Christian - 2016
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
Lauren Ipsum
Carlos Bueno - 2011
If the idea of a computer science book without computers upsets you, please close your eyes until you’ve finished reading the rest of this page.The truth is that computer science is not really about the computer. It is just a tool to help you see ideas more clearly. You can see the moon and stars without a telescope, smell the flowers without a fluoroscope, have fun without a funoscope, and be silly sans oscilloscope.You can also play with computer science without... you-know-what. Ideas are the real stuff of computer science. This book is about those ideas, and how to find them.
Cure Tight Hips Anywhere: Open Locked Up Hips and Pelvis Anytime, Anywhere (Simple Strength Book 1)
Sean Schniederjan - 2014
This book gives the simplest exercises on the market to open your hips with effective correctives you can do anywhere. This program was designed to not only be convenient, but also comprehensive. It breaks down an easy set of progressions and goals to get the muscles on your pelvis, lower back, and hips/upper legs to function. Doing these exercises will: -restore balance to your body -instantly improve your posture and hip mobility -strengthen your hips in addition to opening them leaving you feeling "tied together" and fantastic.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
R for Everyone: Advanced Analytics and Graphics
Jared P. Lander - 2013
R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community
Abstract Algebra
I.N. Herstein - 1986
Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.