Book picks similar to
Quantum Enigma: Physics Encounters Consciousness by Bruce Rosenblum
science
physics
non-fiction
nonfiction
The Joy of x: A Guided Tour of Math, from One to Infinity
Steven H. Strogatz - 2012
do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.
You Are Not So Smart: Why You Have Too Many Friends on Facebook, Why Your Memory Is Mostly Fiction, and 46 Other Ways You're Deluding Yourself
David McRaney - 2011
Whether you’re deciding which smart phone to purchase or which politician to believe, you think you are a rational being whose every decision is based on cool, detached logic, but here’s the truth: You are not so smart. You’re just as deluded as the rest of us--but that’s okay, because being deluded is part of being human. Growing out of David McRaney’s popular blog, You Are Not So Smart reveals that every decision we make, every thought we contemplate, and every emotion we feel comes with a story we tell ourselves to explain them, but often these stories aren’t true. Each short chapter--covering topics such as Learned Helplessness, Selling Out, and the Illusion of Transparency--is like a psychology course with all the boring parts taken out.Bringing together popular science and psychology with humor and wit, You Are Not So Smart is a celebration of our irrational, thoroughly human behavior.
The Doors of Perception
Aldous Huxley - 1954
First published in 1954, it details his experiences when taking mescaline. The book takes the form of Huxley's recollection of a mescaline trip that took place over the course of an afternoon in May 1953. The book takes its title from a phrase in William Blake's 1793 poem 'The Marriage of Heaven and Hell'. Huxley recalls the insights he experienced, which range from the "purely aesthetic" to "sacramental vision". He also incorporates later reflections on the experience and its meaning for art and religion.
The Laws of Thermodynamics: A Very Short Introduction
Peter Atkins - 1990
From the sudden expansion of a cloud of gas to the cooling of hot metal--everything is moved or restrained by four simple laws. Written by Peter Atkins, one of the world's leading authorities on thermodynamics, this powerful and compact introduction explains what these four laws are and how they work, using accessible language and virtually no mathematics. Guiding the reader a step at a time, Atkins begins with Zeroth (so named because the first two laws were well established before scientists realized that a third law, relating to temperature, should precede them--hence the jocular name zeroth), and proceeds through the First, Second, and Third Laws, offering a clear account of concepts such as the availability of work and the conservation of energy. Atkins ranges from the fascinating theory of entropy (revealing how its unstoppable rise constitutes the engine of the universe), through the concept of free energy, and to the brink, and then beyond the brink, of absolute zero. About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
The Structure of Scientific Revolutions
Thomas S. Kuhn - 1962
The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context. Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.
The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World
Edward Dolnick - 2011
A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.
Supernatural: Meetings with the Ancient Teachers of Mankind
Graham Hancock - 2005
Then, in a dramatic change, described by scientists as 'the greatest riddle in human history', all the skills & qualities that we value most highly in ourselves appeared already fully formed, as tho bestowed on us by hidden powers. In Supernatural Hancock sets out to investigate this mysterious before-&-after moment & to discover the truth about the influences that gave birth to the modern mind. His quest takes him on a detective journey from the beautiful painted caves of prehistoric France, Spain & Italy to rock shelters in the mountains of S. Africa, where he finds extraordinary Stone Age art. He uncovers clues that lead him to the Amazon rainforest to drink the hallucinogen Ayahuasca with shamans, whose paintings contain images of 'super-natural beings' identical to the animal-human hybrids depicted in prehistoric caves. Hallucinogens such as mescaline also produce visionary encounters with exactly the same beings. Scientists at the cutting edge of consciousness research have begun to consider the possibility that such hallucinations may be real perceptions of other dimensions. Could the supernaturals 1st depicted in the painted caves be the ancient teachers of humankind? Could it be that human evolution isn't just the meaningless process Darwin identified, but something more purposive & intelligent that we've barely begun to understand?AcknowledgementsPart 1: Visions 1: Plant that enables men to see the dead 2: Greatest riddle of archeology 3: Vine of souls Part 2: Caves 4: Therianthropy5: Riddles of the caves6: Shabby academy 7: Searching for a Rosetta Stone8: Code in the mind 9: Serpents of the Drakensberg10: Wounded healer Part 3: Beings 11: Voyage into the supernatural 12: Shamans in the sky 13: Spirit love 14: Secret commonwealth15: Here is a thing that will carry me away16: Dancers between worlds Part 4: Codes 17: Turning in to channel DMT18: Amongst the machine elves19: Ancient teachers in our DNA?20: Hurricane in the junkyard Part 5: Religions 21: Hidden Shamans22: Flesh of the GodsPart 6: Mysteries 23: Doors leading to another world Appendices Critics & criticisms of David Lewis-Williams' Neuropsychological theory of rock & cave artPsilocybe semilanceata-a hallucinogenic mushroom native to Europe / Roy Watlng Interview with Rick StrassmanReferences Index
From Science to God: A Physicist's Journey into the Mystery of Consciousness
Peter Russell - 2000
That transition is the basis of this book. In From Science to God, he blends physics, psychology, and philosophy to reach a new worldview in which consciousness is a fundamental quality of creation. Russell shows how all the ingredients for this worldview are in place; it remains only to put the pieces together and explore the new picture of reality that emerges. Integrating a deep knowledge of science with his own experiences of meditation, Russell arrives at a universe similar to that described by many mystics — one in which the inner and outer worlds no longer conflict. The bridge between them, he shows, is light, and this book invites readers to cross that bridge to find new meaning in God and a deeper significance in spiritual practice.
Consilience: The Unity of Knowledge
Edward O. Wilson - 1998
In Consilience (a word that originally meant "jumping together"), Edward O. Wilson renews the Enlightenment's search for a unified theory of knowledge in disciplines that range from physics to biology, the social sciences and the humanities.Using the natural sciences as his model, Wilson forges dramatic links between fields. He explores the chemistry of the mind and the genetic bases of culture. He postulates the biological principles underlying works of art from cave-drawings to Lolita. Presenting the latest findings in prose of wonderful clarity and oratorical eloquence, and synthesizing it into a dazzling whole, Consilience is science in the path-clearing traditions of Newton, Einstein, and Richard Feynman.
The Tell-Tale Brain: A Neuroscientist's Quest for What Makes Us Human
V.S. Ramachandran - 2011
S. Ramachandran is at the forefront of his field-so much so that Richard Dawkins dubbed him the "Marco Polo of neuroscience." Now, in a major new work, Ramachandran sets his sights on the mystery of human uniqueness. Taking us to the frontiers of neurology, he reveals what baffling and extreme case studies can teach us about normal brain function and how it evolved. Synesthesia becomes a window into the brain mechanisms that make some of us more creative than others. And autism--for which Ramachandran opens a new direction for treatment--gives us a glimpse of the aspect of being human that we understand least: self-awareness. Ramachandran tackles the most exciting and controversial topics in neurology with a storyteller's eye for compelling case studies and a researcher's flair for new approaches to age-old questions. Tracing the strange links between neurology and behavior, this book unveils a wealth of clues into the deepest mysteries of the human brain.
Alice in Quantumland: An Allegory of Quantum Physics
Robert Gilmore - 1994
Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.
The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy
Roberto Mangabeira Unger - 2014
The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.
Rationality: From AI to Zombies
Eliezer Yudkowsky - 2015
Real rationality, of the sort studied by psychologists, social scientists, and mathematicians. The kind of rationality where you make good decisions, even when it's hard; where you reason well, even in the face of massive uncertainty; where you recognize and make full use of your fuzzy intuitions and emotions, rather than trying to discard them. In "Rationality: From AI to Zombies," Eliezer Yudkowsky explains the science underlying human irrationality with a mix of fables, argumentative essays, and personal vignettes. These eye-opening accounts of how the mind works (and how, all too often, it doesn't!) are then put to the test through some genuinely difficult puzzles: computer scientists' debates about the future of artificial intelligence (AI), physicists' debates about the relationship between the quantum and classical worlds, philosophers' debates about the metaphysics of zombies and the nature of morality, and many more. In the process, "Rationality: From AI to Zombies" delves into the human significance of correct reasoning more deeply than you'll find in any conventional textbook on cognitive science or philosophy of mind. A decision theorist and researcher at the Machine Intelligence Research Institute, Yudkowsky published earlier drafts of his writings to the websites Overcoming Bias and Less Wrong. "Rationality: From AI to Zombies" compiles six volumes of Yudkowsky's essays into a single electronic tome. Collectively, these sequences of linked essays serve as a rich and lively introduction to the science—and the art—of human rationality.
Einstein's Relativity and the Quantum Revolution: Modern Physics for Non-Scientists
Richard Wolfson - 2000
Relativity and quantum physics touch the very basis of physical reality, altering our commonsense notions of space and time, cause and effect. Both have reputations for complexity. But the basic ideas behind relativity and quantum physics are, in fact, simple and comprehensible by anyone. As Professor Wolfson points out, the essence of relativity can be summed up in a single sentence: The laws of physics are the same for all observers in uniform motion. The same goes for quantum theory, which is based on the principle that the "stuff " of the universe-matter and energy-is not infinitely divisible but comes in discrete chunks called "quanta." Profound ... Beautiful ... Relevant Why should you care about these landmark theories? Because relativity and quantum physics are not only profound and beautiful ideas in their own right, they are also the gateway to understanding many of the latest science stories in the media. These are the stories about time travel, string theory, black holes, space telescopes, particle accelerators, and other cutting-edge developments. Consider these ideas: Although Einstein's theory of general relativity dates from 1914, it has not been possible to test certain predictions until recently. The Hubble Space Telescope is providing some of the most striking confirmations of the theory, including certain evidence for the existence of black holes, objects that warp space and time so that not even light can escape. Also, the expansion of the universe predicted by the theory of general relativity is now a known rate. General relativity also predicts an even weirder phenomenon called "wormholes" that offer shortcuts to remote reaches of time and space. According to Einstein's theory of special relativity, two twins would age at different rates if one left on a high-speed journey to a distant star and then returned. This experiment has actually been done, not with twins, but with an atomic clock flown around the world. Another fascinating experiment confirming that time slows as speed increases comes from measuring muons at the top and bottom of mountains. A seemingly absurd consequence of quantum mechanics, called "quantum tunneling," makes it possible for objects to materialize through impenetrable barriers. Quantum tunneling happens all the time on the subatomic scale and plays an important role in electronic devices and the nuclear processes that keep the sun shining. Some predictions about the expansion of the universe were so odd that Einstein himself tried to rewrite the mathematics in order to eliminate them. When Hubble discovered the expansion of the universe, Einstein called the revisions the biggest mistake he had ever made. An intriguing thought experiment called "Schrödinger's cat" suggests that a cat in an enclosed box is simultaneously alive and dead under experimental conditions involving quantum phenomena. From Aristotle to the Theory of Everything Professor Wolfson begins with a brief overview of theories of physical reality starting with Aristotle and culminating in Newtonian or "classical" physics. Then he outlines the logic that led to Einstein's theory of special relativity, and the simple yet far-reaching insight on which it rests. With that insight in mind, you move on to consider Einstein's theory of general relativity and its interpretation of gravitation in terms of the curvature of space and time. Professor Wolfson then shows how inquiry into matter at the atomic and subatomic scales led to quandaries that are resolved-or at least clarified-by quantum mechanics, a vision of physical reality so at odds with our experience that it nearly defies language. Bringing relativity and quantum mechanics into the same picture leads to hypotheses about the origin, development, and possible futures of the entire universe, and the possibility that physics can produce a "theory of everything" to account for all aspects of the physical world. Fascinating Incidents and Ideas Along the way, you'll explore these fascinating incidents and ideas: In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of the Earth relative to the ether, which was a supposedly imponderable substance pervading all of space. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis. In 1905, a young Swiss patent clerk named Albert Einstein resolved the crisis by discarding the ether concept and asserting the principle of relativity-that the laws of physics are the same for all observers in uniform motion. Relativity implies that the time order of events can be different in different reference frames. Does this wreak havoc with cause and effect? And why does Einstein assert that nothing can go faster than light? Shortly after publishing his 1905 paper on special relativity, Einstein realized that his theory required a fundamental equivalence between mass and energy, which he expressed in the equation E=mc2. Among other things, this famous formula means that the energy contained in a single raisin could power a large city for a whole day. Historically, the path to general relativity followed Einstein's attempt to incorporate gravity into relativity theory, which led to his understanding of gravity not as a force, but as a local manifestation of geometry in curved spacetime. Quantum theory places severe limits on our ability to observe nature at the atomic scale because it implies that the act of observation necessarily disturbs the thing that is being observed. The result is Werner Heisenberg's famous "uncertainty principle." Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Could they be manifestations of a single, universal force? A Teaching Legend On his own Middlebury College campus, Professor Wolfson is a teaching legend with an infectious enthusiasm for his subject and a knack for conveying difficult concepts in a way that fosters true understanding. He is the author of an introductory text on physics, a contributor to the esteemed publication Scientific American, and a specialist in interpreting science for the nonspecialist. In this course, Professor Wolfson uses extensive illustrations and diagrams to help bring to life the theories and concepts that he discusses. Thus we highly recommend our DVD version, although Professor Wolfson is mindful of our audio students and carefully describes visual materials throughout his lectures. Professor Richard Wolfson on the Second Edition of Einstein's Relativity: "The first version of this course was produced in 1995. In this new version, I have chosen to spend more time on the philosophical interpretation of quantum physics, and on recent experiments relevant to that interpretation. I have also added a final lecture on the theory of everything and its possible implementation through string theory. The graphic presentations for the DVD version have also been extensively revised and enhanced. But the goal remains the same: to present the key ideas of modern physics in a way that makes them clear to the interested layperson."