Book picks similar to
Statistics with Mathematica by Martha L. Abell
mathematics
statistical-analysis
statistics-maths
analysis
Computational Geometry: Algorithms and Applications
Mark de Berg - 1997
The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.
A Shortcut Through Time: The Path to the Quantum Computer
George Johnson - 2003
Such a device would operate under a different set of physical laws: The laws of quantum mechanics. Johnson gently leads the curious outsider through the surprisingly simple ideas needed to understand this dream, discussing the current state of the revolution, and ultimately assessing the awesome power these machines could have to change our world.
The New Turing Omnibus: 66 Excursions In Computer Science
A.K. Dewdney - 1989
K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Machine Learning
Ethem Alpaydin - 2016
It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpayd�n offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpayd�n, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.
Turing's Vision: The Birth of Computer Science
Chris Bernhardt - 2016
This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, -The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory.- Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer.In the paper, -On Computable Numbers, with an Application to the Entscheidungsproblem, - Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.
Python Tricks: A Buffet of Awesome Python Features
Dan Bader - 2017
Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today.
Who Should Read This Book:
If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review.
If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2.
If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista.
If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge.
What Python Developers Say About The Book:
"I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.
Mathematical Analysis
Tom M. Apostol - 1957
It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.
Introduction to Graph Theory
Richard J. Trudeau - 1994
This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.
The Man Who Knew Too Much: Alan Turing and the Invention of the Computer
David Leavitt - 2006
Then, attempting to break a Nazi code during World War II, he successfully designed and built one, thus ensuring the Allied victory. Turing became a champion of artificial intelligence, but his work was cut short. As an openly gay man at a time when homosexuality was illegal in England, he was convicted and forced to undergo a humiliating "treatment" that may have led to his suicide.With a novelist's sensitivity, David Leavitt portrays Turing in all his humanity—his eccentricities, his brilliance, his fatal candor—and elegantly explains his work and its implications.
Beginning Programming All-In-One Desk Reference for Dummies
Wallace Wang - 2007
If programming intrigues you (for whatever reason), Beginning Programming All-In-One Desk Reference For Dummies is like having a starter programming library all in one handy, if hefty, book.In this practical guide, you'll find out about algorithms, best practices, compiling, debugging your programs, and much more. The concepts are illustrated in several different programming languages, so you'll get a feel for the variety of languages and the needs they fill.Inside you'll discover seven minibooks:Getting Started: From learning methods for writing programs to becoming familiar with types of programming languages, you'll lay the foundation for your programming adventure with this minibook. Programming Basics: Here you'll dive into how programs work, variables, data types, branching, looping, subprograms, objects, and more. Data Structures: From structures, arrays, sets, linked lists, and collections, to stacks, queues, graphs, and trees, you'll dig deeply into the data. Algorithms: This minibook shows you how to sort and search algorithms, how to use string searching, and gets into data compression and encryption. Web Programming: Learn everything you need to know about coding for the web: HyperText. Markup Language (better known simply as HTML), CSS, JavaScript, PHP, and Ruby. Programming Language Syntax: Introduces you to the syntax of various languages - C, C++, Java, C#, Perl, Python, Pascal, Delphi, Visual Basic, REALbasic - so you know when to use which one. Applications: This is the fun part where you put your newly developed programming skills to work in practical ways. Additionally, Beginning Programming All-In-One Desk Reference For Dummies shows you how to decide what you want your program to do, turn your instructions into "machine language" that the computer understands, use programming best practices, explore the "how" and "why" of data structuring, and more. And you'll get a look into various applications like database management, bioinformatics, computer security, and artificial intelligence. After you get this book and start coding, you'll soon realize that -- wow! You're a programmer!
Serious Cryptography: A Practical Introduction to Modern Encryption
Jean-Philippe Aumasson - 2017
You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography.You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questionsEach chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
SQL (Visual QuickStart Guide)
Chris Fehily - 2002
With SQL and this task-based guide to it, you can do it toono programming experience required!After going over the relational database model and SQL syntax in the first few chapters, veteran author Chris Fehily launches into the tasks that will get you comfortable with SQL fast. In addition to explaining SQL basics, this updated reference covers the ANSI SQL:2003 standard and contains a wealth of brand-new information, including a new chapter on set operations and common tasks, well-placed optimization tips to make your queries run fast, sidebars on advanced topics, and added IBM DB2 coverage.Best of all, the book's examples were tested on the latest versions of Microsoft Access, Microsoft SQL Server, Oracle, IBM DB2, MySQL, and PostgreSQL. On the companion Web site, you can download the SQL scripts and sample database for all these systems and put your knowledge to work immediately on a real database..
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
Ada, the Enchantress of Numbers: A Selection from the Letters of Lord Byron's Daughter and Her Description of the First Computer
Ada Lovelace - 1992
She was Lord Byron's daughter and acted as interpretress for Charles Babbage, the computer pioneer. She was one of the first people to write programmes of instruction for Babbage's analytical engines.