Introducing Microsoft Power BI
Alberto Ferrari - 2016
Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.
M Is for (Data) Monkey: A Guide to the M Language in Excel Power Query
Ken Puls - 2015
As more business intelligence pros begin using Power Pivot, they find that they do not have the Excel skills to clean the data in Excel; Power Query solves this problem. This book shows how to use the Power Query tool to get difficult data sets into both Excel and Power Pivot, and is solely devoted to Power Query dashboarding and reporting.
Hadoop Explained
Aravind Shenoy - 2014
Hadoop allowed small and medium sized companies to store huge amounts of data on cheap commodity servers in racks. The introduction of Big Data has allowed businesses to make decisions based on quantifiable analysis. Hadoop is now implemented in major organizations such as Amazon, IBM, Cloudera, and Dell to name a few. This book introduces you to Hadoop and to concepts such as ‘MapReduce’, ‘Rack Awareness’, ‘Yarn’ and ‘HDFS Federation’, which will help you get acquainted with the technology.
Successful Business Intelligence: Secrets to Making BI a Killer App
Cindi Howson - 2007
Learn about the components of a BI architecture, how to choose the appropriate tools and technologies, and how to roll out a BI strategy throughout the organisation.
Getting Started with SQL: A Hands-On Approach for Beginners
Thomas Nield - 2016
If you're a business or IT professional, this short hands-on guide teaches you how to pull and transform data with SQL in significant ways. You will quickly master the fundamentals of SQL and learn how to create your own databases.Author Thomas Nield provides exercises throughout the book to help you practice your newfound SQL skills at home, without having to use a database server environment. Not only will you learn how to use key SQL statements to find and manipulate your data, but you'll also discover how to efficiently design and manage databases to meet your needs.You'll also learn how to:Explore relational databases, including lightweight and centralized modelsUse SQLite and SQLiteStudio to create lightweight databases in minutesQuery and transform data in meaningful ways by using SELECT, WHERE, GROUP BY, and ORDER BYJoin tables to get a more complete view of your business dataBuild your own tables and centralized databases by using normalized design principlesManage data by learning how to INSERT, DELETE, and UPDATE records
Planning for Big Data
Edd Wilder-James - 2004
From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Storytelling with Data: A Data Visualization Guide for Business Professionals
Cole Nussbaumer Knaflic - 2015
You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!
Agile Data Warehouse Design: Collaborative Dimensional Modeling, from Whiteboard to Star Schema
Lawrence Corr - 2011
This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Data Analysis Using SQL and Excel
Gordon S. Linoff - 2007
This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Naked Statistics: Stripping the Dread from the Data
Charles Wheelan - 2012
How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more.For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.