On the Shoulders of Giants: The Great Works of Physics and Astronomy


Stephen Hawking - 2002
    Depicting the great challenges these men faced and the lasting contributions they made, Hawking explains how their works transformed the course of science – and gave us a better understanding of the universe and our place in it.

The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics


Robert Oerter - 2005
    The first, which describes the force of gravity, is widely known: Einstein's General Theory of Relativity. But the theory that explains everything else--the Standard Model of Elementary Particles--is virtually unknown among the general public.In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge--and reveals the sublime structure that underlies the world as we know it.

The Quantum Brain: The Search for Freedom and the Next Generation of Man


Jeffrey Satinover - 2001
    To answer them, psychiatrist, researcher, and critically acclaimed author Jeffrey Satinover first explores the latest discoveries in neuroscience, modern physics, and radically new kinds of computing, then shows how, together, they suggest the brain embodies and amplifies the mysterious laws of quantum physics. By its doing so, Satinover argues we are elevated above the mere learning machines modern science assumes us to be. Satinover also makes two provocative predictions: We will soon construct artificial devices as free and aware as we are; as well as begin a startling re-evaluation of just who and what we are, of our place in the universe, and perhaps even of God.

The Holographic Universe


Michael Talbot - 1991
    Now, two of the world's most eminent thinkers -- University of London physicists David Bohm, a former protege of Einstein's and one of the world's most respected quantum physicists, and Stanford neurophysiologist Karl Pribram, one of the architects of our modern understanding of the brain -- believe that the universe itself may be a giant hologram, quite literally a kind of image or construct created, at least in part, by the human mind. This remarkable new way of looking at the universe explains not only many of the unsolved puzzles of physics, but also such mysterious occurrences as telepathy, out-of-body and near death experiences, "lucid" dreams, and even religious and mystical experiences such as feelings of cosmic unity and miraculous healings.

The Cosmic Landscape: String Theory and the Illusion of Intelligent Design


Leonard Susskind - 2005
    Line drawings.

Albert Einstein: The Life of a Genius


Jack Steinberg - 2015
    Students around the world are taught about his theories and equations with E=mc2 undoubtedly being the most famous.However, there was more to this man than simply being a genius or the original prototype of the mad professor. Instead, this was a man that was dedicated to not only his profession, but also the concept of pacifism, something that most people are unaware of.Albert Einstein went from a late developing child to running away from school to almost failing university and instead turned himself into one of the greatest minds that the world has ever seen. This is his story, a story of how a child taught himself calculus and geometry and was then not afraid to challenge concepts of how the world worked that had been unchanged for centuries. This was a man who stood up for what he believed in even when the world appeared to be against him.The story of Albert Einstein is about more than just mathematical equations. The story is about a man who beat the odds and became world famous in the unlikely world of physics and the universe.

Dialogues on Mathematics


Alfréd Rényi - 1967
    

Introducing Quantum Theory: A Graphic Guide


J.P. McEvoy - 1992
    At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.

The Particle Zoo: The Search for the Fundamental Nature of Reality


Gavin Hesketh - 2016
    Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution.Why are atoms so small? How did the Higgs boson save the universe? And is there a Theory of Everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter... and, ultimately, what we know about the true, fundamental nature of reality.

The Physics Of Consciousness: The Quantum Mind And The Meaning Of Life


Evan Harris Walker - 2000
    Now there is a clear trail to the answer, and it leads through the dense jungle of quantum physics, Zen, and subjective experience, and arrives at an unexpected destination. In this tour-de-force of scientific investigation, Evan Harris Walker shows how the operation of bizarre yet actual properties of elementary particles support a new and exciting theory of reality, based on the principles of quantum physics-a theory that answers questions such as "What is the nature of consciousness, of will?" "What is the source of material reality?" and "What is God?"

The Complete Idiot's Guide to String Theory


George Musser - 2008
    The aim of this new revolution is to develop a "theory of everything" -- a set of laws of physics that will explain all that can be explained, ranging from the tiniest subatomic particle to the universe as a whole. Here, readers will learn the ideas behind the theories and their effects upon our world, our civilization, and ourselves.

How to Live Dangerously: The Hazards of Helmets, the Benefits of Bacteria, and the Risks of Living Too Safe


Warwick Cairns - 2008
    Yet you'd have to fly every day for the next 26,000 years to assure yourself of dying in a crash. A leisurely canoe ride is more than 100 times deadlier. Think city streets are unsafe? You're more likely to come to harm in your own home, where every year you stand a 1 in 650 chance of being injured by your bed, mattress, or pillows—and each year 800 Americans die in accidents involving soft furnishings.We live in a world governed by fear, where packets of peanuts "may contain nuts" and children must be ever on the alert to "stranger danger." And yet, life expectancy has never been higher. Crime rates have plunged. Even unintentional injuries are down. So if we're so safe, why are we so afraid?How to Live Dangerously is a hilarious, straight-talking look at the things that terrify us. It considers life's real risks, not to mention the often ridiculous methods we've contrived to keep ourselves "safe." It encourages you to ignore fearmongers and embrace a new kind of freedom, in which we all worry a little less—and live a whole lot more.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Quantum Physics: Illusion or Reality?


Alastair I.M. Rae - 1985
    The difficulty he, and others, had with Quantum Physics was the great conceptual leap it requires taking from conventional ways of thinking about the physical world. Alastair Rae's introductory exploration into this area has been hailed as a masterpiece of clarity and is an engaging guide to the theories offered. This revised edition contains a new chapter covering theories developed during the past decade. Alastair Rae has been a Lecturer, a Senior Lecturer, then Reader in Quantum Physics in the School of Physics and Astronomy at University of Birmingham from 1967-2003. His publications include the First Edition of Quantum Physics, (Cambridge, 1994) and Quantum Mechanics (Institute of Physics, 2002), now in its Fourth Edition. First Edition Pb (1994): 0-521-46716-0

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.