Moneyball: The Art of Winning an Unfair Game


Michael Lewis - 2003
    Conventional wisdom long held that big name, highly athletic hitters and young pitchers with rocket arms were the ticket to success. But Beane and his staff, buoyed by massive amounts of carefully interpreted statistical data, believed that wins could be had by more affordable methods such as hitters with high on-base percentage and pitchers who get lots of ground outs. Given this information and a tight budget, Beane defied tradition and his own scouting department to build winning teams of young affordable players and inexpensive castoff veterans. Lewis was in the room with the A's top management as they spent the summer of 2002 adding and subtracting players and he provides outstanding play-by-play. In the June player draft, Beane acquired nearly every prospect he coveted (few of whom were coveted by other teams) and at the July trading deadline he engaged in a tense battle of nerves to acquire a lefty reliever. Besides being one of the most insider accounts ever written about baseball, Moneyball is populated with fascinating characters. We meet Jeremy Brown, an overweight college catcher who most teams project to be a 15th round draft pick (Beane takes him in the first). Sidearm pitcher Chad Bradford is plucked from the White Sox triple-A club to be a key set-up man and catcher Scott Hatteberg is rebuilt as a first baseman. But the most interesting character is Beane himself. A speedy athletic can't-miss prospect who somehow missed, Beane reinvents himself as a front-office guru, relying on players completely unlike, say, Billy Beane. Lewis, one of the top nonfiction writers of his era (Liar's Poker, The New New Thing), offers highly accessible explanations of baseball stats and his roadmap of Beane's economic approach makes Moneyball an appealing reading experience for business people and sports fans alike. --John Moe

The Eudaemonic Pie


Thomas A. Bass - 1985
    “The result is a veritable pi

Calculus


Dale E. Varberg - 1999
    Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.

Fifty Challenging Problems in Probability with Solutions


Frederick Mosteller - 1965
    Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.

Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak


Travis Sawchik - 2015
    Pittsburghers joked their town was the city of champions…and the Pirates. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise's fortunes.Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the small-market Pirates played the game. For manager Clint Hurdle and the front office staff to save their jobs, they could not rely on a free agent spending spree, instead they had to improve the sum of their parts and find hidden value. They had to change. From Hurdle shedding his old-school ways to work closely with Neal Huntington, the forward-thinking data-driven GM and his team of talented analysts; to pitchers like A. J. Burnett and Gerrit Cole changing what and where they threw; to Russell Martin, the undervalued catcher whose expert use of the nearly-invisible skill of pitch framing helped the team's pitchers turn more balls into strikes; to Clint Barmes, a solid shortstop and one of the early adopters of the unconventional on-field shift which forced the entire infield to realign into positions they never stood in before. Under Hurdle's leadership, a culture of collaboration and creativity flourished as he successfully blended whiz kid analysts with graybeard coaches—a kind of symbiotic teamwork which was unique to the sport.Big Data Baseball is Moneyball on steroids. It is an entertaining and enlightening underdog story that uses the 2013 Pirates season as the perfect lens to examine the sport's burgeoning big-data movement. With the help of data-tracking systems like PitchF/X and TrackMan, the Pirates collected millions of data points on every pitch and ball in play to create a tome of color-coded reports that revealed groundbreaking insights for how to win more games without spending a dime. In the process, they discovered that most batters struggled to hit two-seam fastballs, that an aggressive defensive shift on the field could turn more batted balls into outs, and that a catcher's most valuable skill was hidden. All these data points which aren't immediately visible to players and spectators, are the bit of magic that led the Pirates to spin straw in to gold, finish the 2013 season in second place, end a twenty-year losing streak.

Fundamentals of Biostatistics (with CD-ROM)


Bernard Rosner - 1982
    Fundamentals of Biostatistics with CD-Rom.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving


Sanjoy Mahajan - 2010
    Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Struck by Lightning: The Curious World of Probabilities


Jeffrey S. Rosenthal - 2005
    Human beings have long been both fascinated and appalled by randomness. On the one hand, we love the thrill of a surprise party, the unpredictability of a budding romance, or the freedom of not knowing what tomorrow will bring. We are inexplicably delighted by strange coincidences and striking similarities. But we also hate uncertainty's dark side. From cancer to SARS, diseases strike with no apparent pattern. Terrorists attack, airplanes crash, bridges collapse, and we never know if we'll be that one in a million statistic. We are all constantly faced with situations and choices that involve randomness and uncertainty. A basic understanding of the rules of probability theory, applied to real-life circumstances, can help us to make sense of these situations, to avoid unnecessary fear, to seize the opportunities that randomness presents to us, and to actually enjoy the uncertainties we face. The reality is that when it comes to randomness, you can run, but you can't hide. So many aspects of our lives are governed by events that are simply not in our control. In this entertaining yet sophisticated look at the world of probabilities, author Jeffrey Rosenthal--an improbably talented math professor--explains the mechanics of randomness and teaches us how to develop an informed perspective on probability.

Archimedes' Revenge: The Joys and Perils of Mathematics


Paul Hoffman - 1988
    An extremely clever account.--The New Yorker.

Tests, Measurements and Research Methods in Behavioural Sciences


A.K. Singh
    discuss about research

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern


Keith Devlin - 2008
    One simply could not put a numerical value on the likelihood that a particular event would occur. Even the outcome of something as simple as a dice roll or the likelihood of showers instead of sunshine was thought to lie in the realm of pure, unknowable chance.The issue remained intractable until Blaise Pascal wrote to Pierre de Fermat in 1654, outlining a solution to the “unfinished game” problem: how do you divide the pot when players are forced to end a game of dice before someone has won? The idea turned out to be far more seminal than Pascal realized. From it, the two men developed the method known today as probability theory.In The Unfinished Game, mathematician and NPR commentator Keith Devlin tells the story of this correspondence and its remarkable impact on the modern world: from insurance rates, to housing and job markets, to the safety of cars and planes, calculating probabilities allowed people, for the first time, to think rationally about how future events might unfold.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.