The Case Against Reality: Why Evolution Hid the Truth from Our Eyes


Donald D. Hoffman - 2019
    How can it be possible that the world we see is not objective reality? And how can our senses be useful if they are not communicating the truth? Hoffman grapples with these questions and more over the course of this eye-opening work.Ever since Homo sapiens has walked the earth, natural selection has favored perception that hides the truth and guides us toward useful action, shaping our senses to keep us alive and reproducing. We observe a speeding car and do not walk in front of it; we see mold growing on bread and do not eat it. These impressions, though, are not objective reality. Just like a file icon on a desktop screen is a useful symbol rather than a genuine representation of what a computer file looks like, the objects we see every day are merely icons, allowing us to navigate the world safely and with ease.The real-world implications for this discovery are huge. From examining why fashion designers create clothes that give the illusion of a more “attractive” body shape to studying how companies use color to elicit specific emotions in consumers, and even dismantling the very notion that spacetime is objective reality, The Case Against Reality dares us to question everything we thought we knew about the world we see.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

The Viral Storm: The Dawn of a New Pandemic Age


Nathan Wolfe - 2011
    In The Viral Storm, award-winning biologist Nathan Wolfe tells the story of how viruses and human beings have evolved side by side through history; how deadly viruses like HIV, swine flu, and bird flu almost wiped us out in the past; and why modern life has made our species vulnerable to the threat of a global pandemic.Wolfe's research missions to the jungles of Africa and the rain forests of Borneo have earned him the nickname "the Indiana Jones of virus hunters," and here Wolfe takes readers along on his groundbreaking and often dangerous research trips—to reveal the surprising origins of the most deadly diseases and to explain the role that viruses have played in human evolution.In a world where each new outbreak seems worse than the one before, Wolfe points the way forward, as new technologies are brought to bear in the most remote areas of the world to neutralize these viruses and even harness their power for the good of humanity. His provocative vision of the future will change the way we think about viruses, and perhaps remove a potential threat to humanity's survival.

The Universe Within: From Quantum to Cosmos


Neil Turok - 2012
    Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come. In this personal and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries -- from classical mechanics, to the nature of light, to the bizarre world of the quantum, and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current, dissatisfying digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world. Scientific research, training, and outreach are vital to our future economy, as well as powerful forces for peaceful global progress.

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

The Demon Under the Microscope: From Battlefield Hospitals to Nazi Labs, One Doctor's Heroic Search for the World's First Miracle Drug


Thomas Hager - 2006
    The Allies won the war with it. It conquered diseases, changed laws, and single-handedly launched the era of antibiotics. This incredible discovery was sulfa, the first antibiotic. In The Demon Under the Microscope, Thomas Hager chronicles the dramatic history of the drug that shaped modern medicine.Sulfa saved millions of lives—among them those of Winston Churchill and Franklin Delano Roosevelt Jr.—but its real effects are even more far reaching. Sulfa changed the way new drugs were developed, approved, and sold; transformed the way doctors treated patients; and ushered in the era of modern medicine. The very concept that chemicals created in a lab could cure disease revolutionized medicine, taking it from the treatment of symptoms and discomfort to the eradication of the root cause of illness. A strange and colorful story, The Demon Under the Microscope illuminates the vivid characters, corporate strategy, individual idealism, careful planning, lucky breaks, cynicism, heroism, greed, hard work, and the central (though mistaken) idea that brought sulfa to the world. This is a fascinating scientific tale with all the excitement and intrigue of a great suspense novel. For thousands of years, humans had sought medicines with which they could defeat contagion, and they had slowly, painstakingly, won a few battles: some vaccines to ward off disease, a handful of antitoxins. A drug or two was available that could stop parasitic diseases once they hit, tropical maladies like malaria and sleeping sickness. But the great killers of Europe, North America, and most of Asia—pneumonia, plague, tuberculosis, diphtheria, cholera, meningitis—were caused not by parasites but by bacteria, much smaller, far different microorganisms. By 1931, nothing on earth could stop a bacterial infection once it started. . . .But all that was about to change. . . . —from The Demon Under the Microscope

Quantum Reality


Nick Herbert - 1985
    This clearly explained layman's introduction to quantum physics is an accessible excursion into metaphysics and the meaning of reality.Herbert exposes the quantum world and the scientific and philosophical controversy about its interpretation."

The Physics of Star Wars: The Science Behind a Galaxy Far, Far Away


Patrick Johnson - 2017
    In The Physics of Star Wars, you’ll explore the mystical power of the Force using quantum mechanics, find out how much energy it would take for the Death Star or Starkiller Base to destroy a planet, and discover how we can potentially create our very own lightsabers. The fantastical world of Star Wars may become a reality!

Introducing Quantum Theory: A Graphic Guide


J.P. McEvoy - 1992
    At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.

The Sun's Heartbeat: And Other Stories from the Life of the Star That Powers Our Planet


Bob Berman - 2011
    And from the ancients who plotted its path at Stonehenge to the modern scientists who unraveled the nuclear fusion reaction that turns mass into energy, humankind has sought to solve its mysteries. In this lively biography of the sun, Bob Berman ranges from its stellar birth to its spectacular future death with a focus on the wondrous and enthralling, and on the heartbreaking sacrifice, laughable errors, egotistical battles, and brilliant inspirations of the people who have tried to understand its power. What, exactly, are the ghostly streaks of light astronauts see-but can't photograph-when they're in space? And why is it impossible for two people to see the exact same rainbow? Why are scientists beginning to think that the sun is safer than sunscreen? And how does the fluctuation of sunspots-and its heartbeat-affect everything from satellite communications to wheat production across the globe? Peppered with mind-blowing facts and memorable anecdotes about spectral curiosities-the recently-discovered "second sun" that lurks beneath the solar surface, the eerie majesty of a total solar eclipse-The Sun's Heartbeat offers a robust and entertaining narrative of how the Sun has shaped humanity and our understanding of the universe around us.

The Science of Sci-Fi: From Warp Speed to Interstellar Travel


Erin Macdonald - 2019
    While not every story is concerned with the hard science behind space travel and other futuristic ventures, fiction can give listeners an amazing insight into what people could be capable of and what people dream of doing.In the 10 lectures of The Science of Sci-Fi: From Warp Speed to Interstellar Travel, Professor Erin Macdonald interweaves real science and the achievements of the imagination to reveal the truth that underlies favorite stories and sheds light on what the future may hold. From faster-than-light travel to journeys through time itself, science fiction makes humanity seem limitless. So, what scientific boundaries are people pushing against while seeking to fly among the stars?Listening Length: 3 hours and 59 minutes

The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us


Noson S. Yanofsky - 2013
    This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.

Introduction to Quantum Mechanics


David J. Griffiths - 1994
    The book s two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers. "

Wrinkles in Time


George Smoot - 1993
    Dr. George Smoot, a distinguished cosmologist and adventurer whose quest for cosmic knowledge had taken him from the Brazilian rain forest to the South Pole, unveiled his momentous discovery, bringing to light the very nature of the universe. For anyone who has ever looked up at the night sky and wondered, for anyone who has ever longed to pull aside the fabric of the universe for a glimpse of what lies behind it. Wrinkles in Time is the story of Smoot's search to uncover the cosmic seeds of the universe.Wrinkles in Time is the Double Helix of cosmology, an intimate look at the inner world of men and women who ask. "Why are we here?" It tells the story of George Smoot's dogged pursuit of the cosmic wrinkles in the frozen wastes of Antarctica, on mountaintops, in experiments borne aloft aboard high-altitude balloons, U-2 spy planes, and finally a space satellite. Wrinkles in Time presents the hard science behind the structured violence of the big bang theory through breathtakingly clear, lucid images and meaningful comparisons. Scientists and nonscientists alike can follow with rapt attention the story of how, in a fiery creation, wrinkles formed in space ultimately to become stars, galaxies, and even greater delicate structures. Anyone can appreciate the implications of a universe whose end is written in its beginnings - whose course developed according to a kind of cosmic DNA, which guided the universe from simplicity and symmetry to ever-greater complexity and structure. As controversial as it may seem today, Wrinkles in Time reveals truths that, in an earlier century, would have doomed its proclaimers to the fiery stake. For four thousand years some people have accepted the Genesis account of cosmic origin; for most of this century, scientists debated two rival scientific explanations known as the steady state and big bang theories. And now, Wrinkles in Time tells what really happened. The personal story behind astrophysicist George Smoot's incredible discovery of the origin of the cosmos, hailed by Stephen Hawking as "The scientific discovery of the century, if not of all time."