Book picks similar to
Introduction to Mathematical Statistics by Robert V. Hogg
statistics
mathematics
textbooks
math
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Social and Economic Networks
Matthew O. Jackson - 2008
The many aspects of our lives that are governed by social networks make it critical to understand how they impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do. In Social and Economic Networks, Matthew Jackson offers a comprehensive introduction to social and economic networks, drawing on the latest findings in economics, sociology, computer science, physics, and mathematics. He provides empirical background on networks and the regularities that they exhibit, and discusses random graph-based models and strategic models of network formation. He helps readers to understand behavior in networked societies, with a detailed analysis of learning and diffusion in networks, decision making by individuals who are influenced by their social neighbors, game theory and markets on networks, and a host of related subjects. Jackson also describes the varied statistical and modeling techniques used to analyze social networks. Each chapter includes exercises to aid students in their analysis of how networks function.This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.
Intuitive Biostatistics
Harvey Motulsky - 1995
Intuitive Biostatistics covers all the topics typically found in an introductory statistics text, but with the emphasis on confidence intervals rather than P values, making it easier for students to understand both. Additionally, it introduces a broad range of topics left out of most other introductory texts but used frequently in biomedical publications, including survival curves. multiple comparisons, sensitivity and specificity of lab tests, Bayesian thinking, lod scores, and logistic, proportional hazards and nonlinear regression. By emphasizing interpretation rather than calculation, this text provides a clear and virtually painless introduction to statistical principles for those students who will need to use statistics constantly in their work. In addition, its practical approach enables readers to understand the statistical results published in biological and medical journals.
Inorganic Chemistry
Catherine E. Housecroft - 2001
It offers superior coverage of all key areas, including descriptive chemistry, MO theory, bonding, and physical inorganic chemistry. Chapter topics are presented in logical order and include: basic concepts; nuclear properties; an introduction to molecular symmetry; bonding in polyatomic molecules; structures and energetics of metallic and ionic solids; acids, bases, and ions in aqueous solution; reduction and oxidation; non-aqueous media; and hydrogen. Four special topic chapters, chosen for their currency and interest, conclude the book. For researchers seeking the latest information in the field of inorganic chemistry.
Introduction to Quantum Mechanics with Applications to Chemistry
Linus Pauling - 1985
Numerous tables and figures.
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Linear Algebra
Kenneth M. Hoffman - 1971
Linear Equations; Vector Spaces; Linear Transformations; Polynomials; Determinants; Elementary canonical Forms; Rational and Jordan Forms; Inner Product Spaces; Operators on Inner Product Spaces; Bilinear Forms For all readers interested in linear algebra.
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Conceptual Mathematics: A First Introduction to Categories
F. William Lawvere - 1997
Written by two of the best-known names in categorical logic, Conceptual Mathematics is the first book to apply categories to the most elementary mathematics. It thus serves two purposes: first, to provide a key to mathematics for the general reader or beginning student; and second, to furnish an easy introduction to categories for computer scientists, logicians, physicists, and linguists who want to gain some familiarity with the categorical method without initially committing themselves to extended study.
The Theater Experience
Edwin Wilson - 1976
By addressing the importance of the audience, Wilson brings the art of performance to life for students who may have little experience with the medium.
Classical Mechanics
Herbert Goldstein - 1950
KEY TOPICS: This classic book enables readers to make connections between classical and modern physics - an indispensable part of a physicist's education. In this new edition, Beams Medal winner Charles Poole and John Safko have updated the book to include the latest topics, applications, and notation, to reflect today's physics curriculum. They introduce readers to the increasingly important role that nonlinearities play in contemporary applications of classical mechanics. New numerical exercises help readers to develop skills in how to use computer techniques to solve problems in physics. Mathematical techniques are presented in detail so that the book remains fully accessible to readers who have not had an intermediate course in classical mechanics. MARKET: For college instructors and students.
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton
Organic Chemistry
Francis A. Carey - 2007
This best-selling text gives students a solid understanding of organic chemistry by stressing how fundamental reaction mechanisms function and reactions occur. With the addition of handwritten solutions, new cutting-edge molecular illustrations, updated spectroscopy coverage, seamless integration of molecular modeling exercises, and state-of-the-art multimedia tools, the 7th edition of Organic Chemistry clearly offers the most up-to-date approach to the study of organic chemistry.