What If? Serious Scientific Answers to Absurd Hypothetical Questions


Randall Munroe - 2014
    It now has 600,000 to a million page hits daily. Every now and then, Munroe would get emails asking him to arbitrate a science debate. 'My friend and I were arguing about what would happen if a bullet got struck by lightning, and we agreed that you should resolve it . . . ' He liked these questions so much that he started up What If. If your cells suddenly lost the power to divide, how long would you survive? How dangerous is it, really, to be in a swimming pool in a thunderstorm? If we hooked turbines to people exercising in gyms, how much power could we produce? What if everyone only had one soulmate?When (if ever) did the sun go down on the British empire? How fast can you hit a speed bump while driving and live?What would happen if the moon went away?In pursuit of answers, Munroe runs computer simulations, pores over stacks of declassified military research memos, solves differential equations, and consults with nuclear reactor operators. His responses are masterpieces of clarity and hilarity, studded with memorable cartoons and infographics. They often predict the complete annihilation of humankind, or at least a really big explosion. Far more than a book for geeks, WHAT IF: Serious Scientific Answers to Absurd Hypothetical Questions explains the laws of science in operation in a way that every intelligent reader will enjoy and feel much the smarter for having read.

The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

Ptolemy's Almagest


Ptolemy
    A masterpiece of technical exposition, it was the basic textbook of astronomy for more than a thousand years, and still is the main source for our knowledge of ancient astronomy. This translation, based on the standard Greek text of Heiberg, makes the work accessible to English readers in an intelligible and reliable form. It contains numerous corrections derived from medieval Arabic translations and extensive footnotes that take account of the great progress in understanding the work made in this century, due to the discovery of Babylonian records and other researches. It is designed to stand by itself as an interpretation of the original, but it will also be useful as an aid to reading the Greek text.

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

The Fabulous Fibonacci Numbers


Alfred S. Posamentier - 2007
    In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.

Quantum Mechanics and Path Integrals


Richard P. Feynman - 1965
    Feynman starts with an intuitive view of fundamental quantum mechanics, gradually introducing path integrals. Later chapters explore more advanced topics, including the perturbation method, quantum electrodynamics, and statistical mechanics. 1965 edition, emended in 2005.

A First Course in Abstract Algebra


John B. Fraleigh - 1967
    Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.

Course of Theoretical Physics: Vol. 1, Mechanics


L.D. Landau - 1969
    The exposition is simple and leads to the most complete direct means of solving problems in mechanics. The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.

Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

Classical Mechanics


John R. Taylor - 2003
    John Taylor has brought to his new book, Classical Mechanics, all of the clarity and insight that made his introduction to Error Analysis a best-selling text.

An Introduction to Probability Theory and Its Applications, Volume 1


William Feller - 1968
    Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.

Mathematical Proofs: A Transition to Advanced Mathematics


Gary Chartrand - 2002
    This text introduces students to proof techniques and writing proofs of their own. As such, it is an introduction to the mathematics enterprise, providing solid introductions to relations, functions, and cardinalities of sets.

Probability And Statistics For Engineers And Scientists


Ronald E. Walpole - 1978
     Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.

Linear Algebra


Stephen H. Friedberg - 1979
     This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.