Quantum Physics Made Easy: The Introduction Guide For Beginners Who Flunked Maths And Science In Plain Simple English


Donald B. Grey - 2019
     99.99% of the world’s mysteries are yet to be discovered and/or solved. Why not… It’s time for you to rediscover science? One of the most compelling draws of the sciences for many people is the potential of discovering something that was not known before. Whether someone’s doing it for fame, for fortune, or just for the fun of it, discovering something new, leaving your own personal mark for the rest of humanity’s time in the universe, is a tempting prospect for many. How would you feel about naming a star, and for others to know that you named it? That star would be visible in the sky for the rest of your lifetime, and more than likely for your great-great-great-grandchildren’s lifetimes. Your discovery would be immortalized above for the life of the star. Inside this book you will discover: -String theory and how it came about -Black holes and quantum gravity -If Schrödinger’s Cat is really a cat? -Disagreements between Einstein and Bohr -The double slit experiment Attention! Quantum Physics is NOT for everyone! This book is not for people: -Who doesn’t want to impress their girl with science -Who are not curious about the universe -Who isn’t inspired to name their own science theory If you are ready to learn about quantum physics, Scroll Up And Click On The “BUY NOW” Button Now!

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Stephen Hawking: A Life From Beginning to End


Hourly History - 2019
     In 1963, Stephen Hawking was diagnosed with motor neurone disease and given two years to live. More than half a century later, Hawking had made some of the most significant contributions to our understanding of the universe since Albert Einstein. The world’s most famous physics professor, a best-selling author, and a father of three, Stephen lived his life to its fullest. Bridging the world of theoretical physics with the reach of pop culture, Stephen Hawking became an emblem of human determination and intellectual curiosity. Inside you will read about... ✓ Early Life and Terminal Illness ✓ Hawking Radiation and Black Holes ✓ The Hawking Family ✓ A Gambling Man ✓ Late Life and Death And much more!

Quantum Field Theory: A Modern Introduction International Student Edition


Michio Kaku - 1993
    It includes discussions of topics that have become vital to a modern treatment of GFT, such as critical phenomena, lattice gauge theory, supersymmetry, quantum gravity, supergravity, and superstrings.

The Fabric of Reality: The Science of Parallel Universes--and Its Implications


David Deutsch - 1996
    Taken literally, it implies that there are many universes “parallel” to the one we see around us. This multiplicity of universes, according to Deutsch, turns out to be the key to achieving a new worldview, one which synthesizes the theories of evolution, computation, and knowledge with quantum physics. Considered jointly, these four strands of explanation reveal a unified fabric of reality that is both objective and comprehensible, the subject of this daring, challenging book. The Fabric of Reality explains and connects many topics at the leading edge of current research and thinking, such as quantum computers (which work by effectively collaborating with their counterparts in other universes), the physics of time travel, the comprehensibility of nature and the physical limits of virtual reality, the significance of human life, and the ultimate fate of the universe. Here, for scientist and layperson alike, for philosopher, science-fiction reader, biologist, and computer expert, is a startlingly complete and rational synthesis of disciplines, and a new, optimistic message about existence.

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

The Quantum Story: A History in 40 Moments


Jim Baggott - 2011
    From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents.Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it.This is quantum theory, and this book tells its story.Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes -- significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world.Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.

Dr. Quantum's Little Book Of Big Ideas: Where Science Meets Spirit


Fred Alan Wolf - 2005
    Quantum) is, as Deepak Chopra states, "one of the most important pioneers in the field of consciousness." Featured in the wordofmouth indie hit, What the Bleep Do We Know?!, Dr. Wolf is a physicist who knows how to put complex sciencebased ideas into terms that even sciencephobes can understand. With clarity and a sense of humor, Dr. Quantum presents Big Ideas in the form of both short quotes and longer excerpts and covers topics ranging from the construction of our everyday reality to our relationship to one another. Dr. Quantum's Little Book of Big Ideas is a perfect gift for anyone interested in the realm where science meets spirit.

The Universe Within: From Quantum to Cosmos


Neil Turok - 2012
    Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come. In this personal and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries -- from classical mechanics, to the nature of light, to the bizarre world of the quantum, and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current, dissatisfying digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world. Scientific research, training, and outreach are vital to our future economy, as well as powerful forces for peaceful global progress.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

The Life of the Cosmos


Lee Smolin - 1997
    In The Life of the Cosmos, Smolin cuts the Gordian knot of cosmology with a simple, powerful idea: "The underlying structure of our world, " he writes, "is to be found in the logic of evolution." Today's physicists have overturned Newton's view of the universe, yet they continue to cling to an understanding of reality not unlike Newton's own - as a clock, an intricate mechanism, governed by laws which are mathematical and eternally true. Smolin argues that the laws of nature we observe may be in part the result of a process of natural selection which took place before the big bang. Smolin's ideas are based on recent developments in cosmology, quantum theory, relativity and string theory, yet they offer, at the same time, an unprecedented view of how these developments may fit together to form a new theory of cosmology. From this perspective, the lines between the simple and the complex, the fundamental and the emergent, and even between the biological and the physical are redrawn. The result is a framework that illuminates many intractable problems, from the paradoxes of quantum theory and the nature of space and time to the problem of constructing a final theory of physics. As he argues for this new view, Smolin introduces the reader to recent developments in a wide range of fields, from string theory and quantum gravity to evolutionary theory the structure of galaxies. He examines the philosophical roots of controversies in the foundations of physics, and shows how they may be transformed as science moves towardunderstanding the universe as an interrelated, self-constructed entity, within which life and complexity have a natural place, and in which "the occurrence of novelty, indeed the perpetual birth of novelty, can be understood."

The Quantum World: The disturbing theory at the heart of reality (New Scientist Instant Expert)


New Scientist - 2017
    Things can exist in two places at once and travel backwards and forwards in time. Waves and particles are one and the same, and objects change their behaviour according to whether they are being watched. This is not some alternative universe but the realm of the very small, where quantum mechanics rules. In this weird world of atoms and their constituents, our common sense understanding of reality breaks down - yet quantum mechanics has never failed an experimental test. What does it all mean? For all its weirdness, quantum mechanics has given us many practical technologies including lasers and the transistors that underlie computers and all digital technology. In the future, it promises computers more powerful than any built before, the ability to communicate with absolute privacy, and even quantum teleportation. The Quantum World explores the past, present and future of quantum science, its applications and mind-bending implications. Discover how ideas from quantum mechanics are percolating out into the vast scale of the cosmos - perhaps, in the future, to reveal a new understanding of the big bang and the nature of space and time.ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

An Introduction To Quantum Field Theory


Michael E. Peskin - 1994
    The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

Engineering Thermodynamics


P.K. Nag - 1982