Book picks similar to
Computability Theory: An Introduction to Recursion Theory by Herbert B. Enderton
computer-science
math
textbook
5-max
The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day
David J. Hand - 2014
Hand argues that extraordinarily rare events are anything but. In fact, they’re commonplace. Not only that, we should all expect to experience a miracle roughly once every month. But Hand is no believer in superstitions, prophecies, or the paranormal. His definition of “miracle” is thoroughly rational. No mystical or supernatural explanation is necessary to understand why someone is lucky enough to win the lottery twice, or is destined to be hit by lightning three times and still survive. All we need, Hand argues, is a firm grounding in a powerful set of laws: the laws of inevitability, of truly large numbers, of selection, of the probability lever, and of near enough. Together, these constitute Hand’s groundbreaking Improbability Principle. And together, they explain why we should not be so surprised to bump into a friend in a foreign country, or to come across the same unfamiliar word four times in one day. Hand wrestles with seemingly less explicable questions as well: what the Bible and Shakespeare have in common, why financial crashes are par for the course, and why lightning does strike the same place (and the same person) twice. Along the way, he teaches us how to use the Improbability Principle in our own lives—including how to cash in at a casino and how to recognize when a medicine is truly effective. An irresistible adventure into the laws behind “chance” moments and a trusty guide for understanding the world and universe we live in, The Improbability Principle will transform how you think about serendipity and luck, whether it’s in the world of business and finance or you’re merely sitting in your backyard, tossing a ball into the air and wondering where it will land.
Lectures on the Foundations of Mathematics, Cambridge 1939
Ludwig Wittgenstein - 1989
A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.
Quantum Mechanics: The Theoretical Minimum
Leonard Susskind - 2014
Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Programming with Java: A Primer
E. Balagurusamy - 2006
The language concepts are aptly explained in simple and easy-to-understand style, supported with examples, illustrations and programming and debugging exercises.
Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition
Steve Olson - 2004
Steve Olson followed the six 2001 contestants from the intense tryouts to the Olympiad’s nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the science of intelligence and learning and, finally, the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these teens want to excel in whatever piques their curiosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about both water polo and creative writing. Another plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, they are in many ways not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the the Olympiad, Olson sheds light on many questions, from why Americans feel so queasy about math, to why so few girls compete in the subject, to whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down uncovers a fascinating subculture and its engaging, driven inhabitants.
The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us
Noson S. Yanofsky - 2013
This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
Numerical Recipes: The Art of Scientific Computing
William H. Press - 2007
Widely recognized as the most comprehensive, accessible and practical basis for scientific computing, this new edition incorporates more than 400 Numerical Recipes routines, many of them new or upgraded. The executable C++ code, now printed in color for easy reading, adopts an object-oriented style particularly suited to scientific applications. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Please visit www.nr.com or www.cambridge.org/us/numericalrecipes for more details. More information concerning licenses is available at: www.nr.com/licenses New key features: 2 new chapters, 25 new sections, 25% longer than Second Edition Thorough upgrades throughout the text Over 100 completely new routines and upgrades of many more. New Classification and Inference chapter, including Gaussian mixture models, HMMs, hierarchical clustering, Support Vector MachinesNew Computational Geometry chapter covers KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres New sections include interior point methods for linear programming, Monte Carlo Markov Chains, spectral and pseudospectral methods for PDEs, and many new statistical distributions An expanded treatment of ODEs with completely new routines Plus comprehensive coverage of linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations, and inverse theory
The Information: A History, a Theory, a Flood
James Gleick - 2011
The story of information begins in a time profoundly unlike our own, when every thought and utterance vanishes as soon as it is born. From the invention of scripts and alphabets to the long-misunderstood talking drums of Africa, Gleick tells the story of information technologies that changed the very nature of human consciousness. He provides portraits of the key figures contributing to the inexorable development of our modern understanding of information: Charles Babbage, the idiosyncratic inventor of the first great mechanical computer; Ada Byron, the brilliant and doomed daughter of the poet, who became the first true programmer; pivotal figures like Samuel Morse and Alan Turing; and Claude Shannon, the creator of information theory itself. And then the information age arrives. Citizens of this world become experts willy-nilly: aficionados of bits and bytes. And we sometimes feel we are drowning, swept by a deluge of signs and signals, news and images, blogs and tweets. The Information is the story of how we got here and where we are heading.
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Pedro Domingos - 2015
In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
A Field Guide to Lies: Critical Thinking in the Information Age
Daniel J. Levitin - 2016
We are bombarded with more information each day than our brains can process—especially in election season. It's raining bad data, half-truths, and even outright lies. New York Times bestselling author Daniel J. Levitin shows how to recognize misleading announcements, statistics, graphs, and written reports revealing the ways lying weasels can use them.
It's becoming harder to separate the wheat from the digital chaff. How do we distinguish misinformation, pseudo-facts, distortions, and outright lies from reliable information? Levitin groups his field guide into two categories—statistical infomation and faulty arguments—ultimately showing how science is the bedrock of critical thinking. Infoliteracy means understanding that there are hierarchies of source quality and bias that variously distort our information feeds via every media channel, including social media. We may expect newspapers, bloggers, the government, and Wikipedia to be factually and logically correct, but they so often aren't. We need to think critically about the words and numbers we encounter if we want to be successful at work, at play, and in making the most of our lives. This means checking the plausibility and reasoning—not passively accepting information, repeating it, and making decisions based on it. Readers learn to avoid the extremes of passive gullibility and cynical rejection. Levitin's charming, entertaining, accessible guide can help anyone wake up to a whole lot of things that aren't so. And catch some lying weasels in their tracks!
Good Math: A Geek's Guide to the Beauty of Numbers, Logic, and Computation
Mark C. Chu-Carroll - 2013
There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular “Good Math” blog, you’ll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird.Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing.If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark’s book will both entertain and enlighten you.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
An Introduction to Formal Language and Automata
Peter Linz - 1990
The Text Was Designed To Familiarize Students With The Foundations And Principles Of Computer Science And To Strengthen The Students' Ability To Carry Out Formal And Rigorous Mathematical Arguments. In The New Fourth Edition, Author Peter Linz Has Offered A Straightforward, Uncomplicated Treatment Of Formal Languages And Automata And Avoids Excessive Mathematical Detail So That Students May Focus On And Understand The Underlying Principles. In An Effort To Further The Accessibility And Comprehension Of The Text, The Author Has Added New Illustrative Examples Throughout.
The Calculus Direct
John Weiss - 2009
The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.