Book picks similar to
Optics Lectures on Theoretical Phys Volume 4 by Arnold Sommerfeld
physics
physics-and-math
theoretical-physics
Euclid in the Rainforest: Discovering Universal Truth in Logic and Math
Joseph Mazur - 2004
Underpinning both math and science, it is the foundation of every major advancement in knowledge since the time of the ancient Greeks. Through adventure stories and historical narratives populated with a rich and quirky cast of characters, Mazur artfully reveals the less-than-airtight nature of logic and the muddled relationship between math and the real world. Ultimately, Mazur argues, logical reasoning is not purely robotic. At its most basic level, it is a creative process guided by our intuitions and beliefs about the world.
No bullshit guide to math and physics
Ivan Savov - 2010
It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Information Theory: A Tutorial Introduction
James V. Stone - 2015
In this richly illustrated book, accessible examples are used to show how information theory can be understood in terms of everyday games like '20 Questions', and the simple MatLab programs provided give hands-on experience of information theory in action. Written in a tutorial style, with a comprehensive glossary, this text represents an ideal primer for novices who wish to become familiar with the basic principles of information theory.Download chapter 1 from http://jim-stone.staff.shef.ac.uk/Boo...
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Visual Complex Analysis
Tristan Needham - 1997
Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Mathematics: Its Content, Methods and Meaning
A.D. Aleksandrov - 1963
. . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science
Symmetry
Hermann Weyl - 1952
Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations--as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study
Ed Regis - 1987
Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.
Symmetry: A Journey into the Patterns of Nature
Marcus du Sautoy - 2007
Our eyes and minds are drawn to symmetrical objects, from the pyramid to the pentagon. Of fundamental significance to the way we interpret the world, this unique, pervasive phenomenon indicates a dynamic relationship between objects. In chemistry and physics, the concept of symmetry explains the structure of crystals or the theory of fundamental particles; in evolutionary biology, the natural world exploits symmetry in the fight for survival; and symmetry—and the breaking of it—is central to ideas in art, architecture, and music.Combining a rich historical narrative with his own personal journey as a mathematician, Marcus du Sautoy takes a unique look into the mathematical mind as he explores deep conjectures about symmetry and brings us face-to-face with the oddball mathematicians, both past and present, who have battled to understand symmetry's elusive qualities. He explores what is perhaps the most exciting discovery to date—the summit of mathematicians' mastery in the field—the Monster, a huge snowflake that exists in 196,883-dimensional space with more symmetries than there are atoms in the sun.What is it like to solve an ancient mathematical problem in a flash of inspiration? What is it like to be shown, ten minutes later, that you've made a mistake? What is it like to see the world in mathematical terms, and what can that tell us about life itself? In Symmetry, Marcus du Sautoy investigates these questions and shows mathematical novices what it feels like to grapple with some of the most complex ideas the human mind can comprehend.
Albert Einstein: The Life of a Genius
Jack Steinberg - 2015
Students around the world are taught about his theories and equations with E=mc2 undoubtedly being the most famous.However, there was more to this man than simply being a genius or the original prototype of the mad professor. Instead, this was a man that was dedicated to not only his profession, but also the concept of pacifism, something that most people are unaware of.Albert Einstein went from a late developing child to running away from school to almost failing university and instead turned himself into one of the greatest minds that the world has ever seen. This is his story, a story of how a child taught himself calculus and geometry and was then not afraid to challenge concepts of how the world worked that had been unchanged for centuries. This was a man who stood up for what he believed in even when the world appeared to be against him.The story of Albert Einstein is about more than just mathematical equations. The story is about a man who beat the odds and became world famous in the unlikely world of physics and the universe.
Problems & Solutions In Engineering Mechanics
S.S. Bhavikatti - 2009
It then provides several well developed solved examples which illustrate the various dimensions of the concept under discussion. A set of practice problems is also included to encourage the student to test his mastery over the subject. The book would serve as an excellent text for both Degree and Diploma students of all engineering disciplines. AMIE candidates would also find it most useful.
Strength of Materials, Part 1 and Part 2
Stephen P. Timoshenko - 1983
1: Elementary Theory and Problems contains the essential material that is usually covered in required courses of strength of materials in our engineering schools. Strength of Materials - Part. 2: Advanced Theory and Problems contains the later developments that are of practical importance in the fields of strength of materials, and theory of elasticity. Complete derivations of problems of practical interest are given in most cases. The books are illustrated with a number of problems to which solutions are presented. In many cases, the problems are chosen so as to widen the field covered by the text and to illustrate the application of the theory in the solution of design problems.
Science and Method
Henri Poincaré - 1908
Drawing on examples from many fields, it explains how scientists analyze and choose their working facts, and it explores the nature of experimentation, theory, and the mind. 1914 edition.