Book picks similar to
Modern Processor Design: Fundamentals of Superscalar Processors by John Paul Shen
computer-science
computer-architecture
non-fiction
cs
The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation
Gary William Flake - 1998
Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
Programming in Python 3: A Complete Introduction to the Python Language
Mark Summerfield - 2008
It brings together all the knowledge needed to write any program, use any standard or third-party Python 3 library, and create new library modules of your own.
Implementing Domain-Driven Design
Vaughn Vernon - 2013
Vaughn Vernon couples guided approaches to implementation with modern architectures, highlighting the importance and value of focusing on the business domain while balancing technical considerations.Building on Eric Evans’ seminal book, Domain-Driven Design, the author presents practical DDD techniques through examples from familiar domains. Each principle is backed up by realistic Java examples–all applicable to C# developers–and all content is tied together by a single case study: the delivery of a large-scale Scrum-based SaaS system for a multitenant environment.The author takes you far beyond “DDD-lite” approaches that embrace DDD solely as a technical toolset, and shows you how to fully leverage DDD’s “strategic design patterns” using Bounded Context, Context Maps, and the Ubiquitous Language. Using these techniques and examples, you can reduce time to market and improve quality, as you build software that is more flexible, more scalable, and more tightly aligned to business goals.
Getting Clojure
Russ Olsen - 2018
The vision behind Clojure is of a radically simple language framework holding together a sophisticated collection of programming features. Learning Clojure involves much more than just learning the mechanics of the language. To really get Clojure you need to understand the ideas underlying this structure of framework and features. You need this book: an accessible introduction to Clojure that focuses on the ideas behind the language as well as the practical details of writing code.
Thinking in Java
Bruce Eckel - 1998
The author's take on the essence of Java as a new programming language and the thorough introduction to Java's features make this a worthwhile tutorial. Thinking in Java begins a little esoterically, with the author's reflections on why Java is new and better. (This book's choice of font for chapter headings is remarkably hard on the eyes.) The author outlines his thoughts on why Java will make you a better programmer, without all the complexity. The book is better when he presents actual language features. There's a tutorial to basic Java types, keywords, and operators. The guide includes extensive source code that is sometimes daunting (as with the author's sample code for all the Java operators in one listing.) As such, this text will be most useful for the experienced developer. The text then moves on to class design issues, when to use inheritance and composition, and related topics of information hiding and polymorphism. (The treatment of inner classes and scoping will likely seem a bit overdone for most readers.) The chapter on Java collection classes for both Java Developer's Kit (JDK) 1.1 and the new classes, such as sets, lists, and maps, are much better. There's material in this chapter that you are unlikely to find anywhere else. Chapters on exception handling and programming with type information are also worthwhile, as are the chapters on the new Swing interface classes and network programming. Although it adopts somewhat of a mixed-bag approach, Thinking in Java contains some excellent material for the object-oriented developer who wants to see what all the fuss is about with Java.
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
The Art of Unit Testing: With Examples in .NET
Roy Osherove - 2009
It guides you step by step from simple tests to tests that are maintainable, readable, and trustworthy. It covers advanced subjects like mocks, stubs, and frameworks such as Typemock Isolator and Rhino Mocks. And you'll learn about advanced test patterns and organization, working with legacy code and even untestable code. The book discusses tools you need when testing databases and other technologies. It's written for .NET developers but others will also benefit from this book.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.Table of ContentsThe basics of unit testingA first unit testUsing stubs to break dependenciesInteraction testing using mock objectsIsolation (mock object) frameworksTest hierarchies and organizationThe pillars of good testsIntegrating unit testing into the organizationWorking with legacy code
Problem Solving with Algorithms and Data Structures Using Python
Bradley N. Miller - 2005
It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
97 Things Every Software Architect Should Know: Collective Wisdom from the Experts
Richard Monson-Haefel - 2009
More than four dozen architects -- including Neal Ford, Michael Nygard, and Bill de hOra -- offer advice for communicating with stakeholders, eliminating complexity, empowering developers, and many more practical lessons they've learned from years of experience. Among the 97 principles in this book, you'll find useful advice such as:Don't Put Your Resume Ahead of the Requirements (Nitin Borwankar) Chances Are, Your Biggest Problem Isn't Technical (Mark Ramm) Communication Is King; Clarity and Leadership, Its Humble Servants (Mark Richards) Simplicity Before Generality, Use Before Reuse (Kevlin Henney) For the End User, the Interface Is the System (Vinayak Hegde) It's Never Too Early to Think About Performance (Rebecca Parsons) To be successful as a software architect, you need to master both business and technology. This book tells you what top software architects think is important and how they approach a project. If you want to enhance your career, 97 Things Every Software Architect Should Know is essential reading.
21st Century C: C Tips from the New School
Ben Klemens - 2012
With 21st Century C, you’ll discover up-to-date techniques that are absent from every other C text available. C isn’t just the foundation of modern programming languages, it is a modern language, ideal for writing efficient, state-of-the-art applications. Learn to dump old habits that made sense on mainframes, and pick up the tools you need to use this evolved and aggressively simple language. No matter what programming language you currently champion, you’ll agree that C rocks.Set up a C programming environment with shell facilities, makefiles, text editors, debuggers, and memory checkersUse Autotools, C’s de facto cross-platform package managerLearn which older C concepts should be downplayed or deprecatedExplore problematic C concepts that are too useful to throw outSolve C’s string-building problems with C-standard and POSIX-standard functionsUse modern syntactic features for functions that take structured inputsBuild high-level object-based libraries and programsApply existing C libraries for doing advanced math, talking to Internet servers, and running databases
Programming Perl
Tom Christiansen - 1991
The first edition of this book, Programming Perl, hit the shelves in 1990, and was quickly adopted as the undisputed bible of the language. Since then, Perl has grown with the times, and so has this book.Programming Perl is not just a book about Perl. It is also a unique introduction to the language and its culture, as one might expect only from its authors. Larry Wall is the inventor of Perl, and provides a unique perspective on the evolution of Perl and its future direction. Tom Christiansen was one of the first champions of the language, and lives and breathes the complexities of Perl internals as few other mortals do. Jon Orwant is the editor of The Perl Journal, which has brought together the Perl community as a common forum for new developments in Perl.Any Perl book can show the syntax of Perl's functions, but only this one is a comprehensive guide to all the nooks and crannies of the language. Any Perl book can explain typeglobs, pseudohashes, and closures, but only this one shows how they really work. Any Perl book can say that my is faster than local, but only this one explains why. Any Perl book can have a title, but only this book is affectionately known by all Perl programmers as "The Camel."This third edition of Programming Perl has been expanded to cover version 5.6 of this maturing language. New topics include threading, the compiler, Unicode, and other new features that have been added since the previous edition.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems, and Solutions
Herb Sutter - 2004
This book follows in the tradition of the first two: It delivers new material, organized in bite-sized Items and grouped into themed sections. Readers of the first two books will find some familiar section themes, now including new material, such as exception safety, generic programming, and optimization and memory management techniques. The books overlap in structure and theme, not in content. This book continues the strong emphasis on generic programming and on using the C++ standard library effectively, including coverage of important template and generic programming techniques. Sutter's goal for this third and final book in his set is to present case studies that pull together themes from the previous books. This book also covers important points presented at the C++ Standard Committee where corrections to the Standard have been discussed and accepted.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.