Book picks similar to
Discrete Mathematics: An Introduction to Proofs and Combinatorics by Kevin Ferland
math
cs
under-study
highlight
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma
Alan Turing - 2004
In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Numerical Recipes in C: The Art of Scientific Computing
William H. Press - 1988
In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.
Mental Math: Tricks To Become A Human Calculator
Abhishek V.R. - 2017
Just read this till the end You don’t have to buy this book. Just read this till end & you will learn something that will change the way you do math forever. Warning: I am revealing this secret only to the first set of readers who will buy this book & plan to put this secret back inside the book once I have enough sales. So read this until the very end while you still can.School taught you the wrong way to do mathThe way you were taught to do math, uses a lot of working memory. Working memory is the short term memory used to complete a mental task. You struggle because trying to do mental math the way you were taught in school, overloads your working memory. Let me show you what I mean with an example:Try to multiply the 73201 x 3. To do this you multiply the following:1 x 3 =0 x 3 =2 x 3 =3 x 3 =7 x 3 =This wasn’t hard, & it might have taken you just seconds to multiply the individual numbers. However, to get the final answer, you need to remember every single digit you calculated to put them back together. It takes effort to get the answer because you spend time trying to recall the numbers you already calculated. Math would be easier to do in your head if you didn’t have to remember so many numbers. Imagine when you tried to multiply 73201 x 3, if you could have come up with the answer, in the time it took you to multiply the individual numbers. Wouldn’t you have solved the problem faster than the time it would have taken you to punch in the numbers inside a calculator? Do the opposite of what you were taught in schoolThe secret of doing mental math is to calculate from left to right instead of from right to left. This is the opposite of what you were taught in school. This works so well because it frees your working memory almost completely. It is called the LR Method where LR stands for Left to Right.Lets try to do the earlier example where we multiplied 73201 x 3. This time multiply from left to right, so we get:7 x 3 = 213 x 3 = 93 x 2 = 60 x 3 = 03 x 1 = 3Notice that you started to call out the answer before you even finished the whole multiplication problem. You don’t have to remember a thing to recall & use later. So you end up doing math a lot faster. The Smart ChoiceYou could use what you learnt & apply it to solve math in the future. This might not be easy, because we just scratched the surface. I've already done the work for you. Why try to reinvent the wheel, when there is already a proven & tested system you can immediately apply. This book was first available in video format & has helped 10,000+ students from 132 countries. It is available at ofpad.com/mathcourse to enroll. This book was written to reach students who consume the information in text format. You can use the simple techniques in this book to do math faster than a calculator effortlessly in your head, even if you have no aptitude for math to begin with.Imagine waking up tomorrow being able to do lightning fast math in your head. Your family & friends will look at you like you are some kind of a genius. Since calculations are done in your head, you will acquire better mental habits in the process. So you will not just look like a genius. You will actually be one. Limited Time BonusWeekly training delivered through email for $97 is available for free as a bonus at the end of this book for the first set of readers. Once we have enough readers, this bonus will be charged $97. Why Price Is So LowThis book is priced at a ridiculous discount only to get our first set of readers. When we have enough readers the price will go up.
Data Structures (SIE)
Seymour Lipschutz - 1986
The classic and popular text is back with refreshed pedagogy and programming problems helps the students to have an upper hand on the practical understanding of the subject. Salient Features: Expanded discussion on Recursion (Backtracking, Simulating Recursion), Spanning Trees. Covers all important topics like Strings, Arrays, Linked Lists, Trees Highly illustrative with over 300 figures and 400 solved and unsolved exercises Content 1.Introduction and Overview 2.Preliminaries 3.String Processing 4.Arrays, Records and Pointers 5.Linked Lists 6.S tacks, Queues, Recursion 7.Trees 8.Graphs and Their Applications 9.Sorting and Searching About the Author: Seymour Lipschutz Seymour Lipschutz, Professor of Mathematics, Temple University
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Higher Engineering Mathematics
B.V. Ramana - 2006
Plethora of Solved examples help the students know the variety of problems & Procedure to solve them. Plenty of practice problems facilitate testing their understanding of the subject. Key Features: Covers the syllabus of all the four papers of Engineering Mathematics Detailed coverage of topics with lot of solved examples rendering clear understanding to the students. Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Chapters on preliminary topics like Analytical Solid Geometry Matrices and Determinants Sequence and Series Complex Numbers Vector Algebra Differential and Integral Calculus Extensive coverage of Probability and Statistics (5 chapters). Covers the syllabus of all the four papers of Engineering Mathematics Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Extensive coverage of ?Probability and Statistics (5 chapters) Table of Content: PART I PRELIMI NARIES Chapter 1 Vector Algebra , Theory of Equations ,Complex Numbers PART II DIFFERENTIAL AND INTEGRAL CALCULUS
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Doing Math with Python
Amit Saha - 2015
Python is easy to learn, and it's perfect for exploring topics like statistics, geometry, probability, and calculus. You’ll learn to write programs to find derivatives, solve equations graphically, manipulate algebraic expressions, even examine projectile motion.Rather than crank through tedious calculations by hand, you'll learn how to use Python functions and modules to handle the number crunching while you focus on the principles behind the math. Exercises throughout teach fundamental programming concepts, like using functions, handling user input, and reading and manipulating data. As you learn to think computationally, you'll discover new ways to explore and think about math, and gain valuable programming skills that you can use to continue your study of math and computer science.If you’re interested in math but have yet to dip into programming, you’ll find that Python makes it easy to go deeper into the subject—let Python handle the tedious work while you spend more time on the math.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Kurt Gödel - 1992
Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.