The Leprechauns of Software Engineering


Laurent Bossavit - 2012
    You can think of this problem as a variant of the well known "telephone game", where some trivial rumor is repeated from one person to the next until it has become distorted beyond recognition and blown up out of all proportion.Unfortunately, the objects of this telephone game are generally considered cornerstone truths of the discipline, to the point that their acceptance now seems to hinder further progress.In this short ebook, we will take a look at some of those "ground truths": the claimed 10x variation in productivity between developers; the "software crisis"; the cost-of-change curve; the "cone of uncertainty"; and more. We'll hone our scholarship skills by looking up the original source for these ideas and taking a deep dive in the history of their development. We'll assess the real weight of the evidence behind these ideas.And we'll confront the scary prospect of moving the state of the art forward in a discipline that has had the ground kicked from under it.

Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python


Scott Hartshorn - 2016
    They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.

Domain-Driven Design in PHP


Carlos Buenosvinos
    Explore applying the Hexagonal Architecture within your application, whether within an open source framework or your own bespoke system. Finally, look into integrating Bounded Contexts, using REST and Messaging approaches.

Object Oriented Programming With C++


E. Balagurusamy - 1994
    

The Pragmatic Programmer: From Journeyman to Master


Andy Hunt - 1999
    It covers topics ranging from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you'll learn how toFight software rot; Avoid the trap of duplicating knowledge; Write flexible, dynamic, and adaptable code; Avoid programming by coincidence; Bullet-proof your code with contracts, assertions, and exceptions; Capture real requirements; Test ruthlessly and effectively; Delight your users; Build teams of pragmatic programmers; and Make your developments more precise with automation. Written as a series of self-contained sections and filled with entertaining anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best practices and major pitfalls of many different aspects of software development. Whether you're a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you'll quickly see improvements in personal productivity, accuracy, and job satisfaction. You'll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You'll become a Pragmatic Programmer.

Signal Processing and Linear Systems


B.P. Lathi - 2000
    Based on B. P. Lathi's widely used book, Linear Systems and Signals, it features additional applications to communications, controls, and filtering as well as new chapters on analog and digital filters and digital signal processing. Lathi emphasizes the physical appreciation of concepts rather than the mere mathematical manipulation of symbols. Avoiding the tendency to treat engineering as a branch of applied mathematics, he uses mathematics to enhance physical and intuitive understanding of concepts, instead of employing it only to prove axiomatic theory. Theoretical results are supported by carefully chosen examples and analogies, allowing students to intuitively discover meaning for themselves.

Purely Functional Data Structures


Chris Okasaki - 1996
    However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.

The Linux Command Line


William E. Shotts Jr. - 2012
    Available here:readmeaway.com/download?i=1593279523The Linux Command Line, 2nd Edition: A Complete Introduction PDF by William ShottsRead The Linux Command Line, 2nd Edition: A Complete Introduction PDF from No Starch Press,William ShottsDownload William Shotts’s PDF E-book The Linux Command Line, 2nd Edition: A Complete Introduction

SQL and Relational Theory: How to Write Accurate SQL Code


C.J. Date - 2009
    On the other hand, if you're not well versed in the theory, you can fall into several traps. In SQL and Relational Theory, author C.J. Date demonstrates how you can apply relational theory directly to your use of SQL. With numerous examples and clear explanations of the reasoning behind them, you'll learn how to deal with common SQL dilemmas, such as:Should database access granted be through views instead of base tables? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Could you write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports "quantified comparisons," but they're better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don't support them properly. What can you do to resolve this situation? Database theory and practice have evolved since Edgar Codd originally defined the relational model back in 1969. Independent of any SQL products, SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of the material available anywhere. Anyone with a modest to advanced background in SQL will benefit from the many insights in this book.

Clean Code: A Handbook of Agile Software Craftsmanship


Robert C. Martin - 2007
    But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.

Cracking the Coding Interview: 150 Programming Questions and Solutions


Gayle Laakmann McDowell - 2008
    This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.

R for Dummies


Joris Meys - 2012
    R is packed with powerful programming capabilities, but learning to use R in the real world can be overwhelming for even the most seasoned statisticians. This easy-to-follow guide explains how to use R for data processing and statistical analysis, and then, shows you how to present your data using compelling and informative graphics. You'll gain practical experience using R in a variety of settings and delve deeper into R's feature-rich toolset.Includes tips for the initial installation of RDemonstrates how to easily perform calculations on vectors, arrays, and lists of dataShows how to effectively visualize data using R's powerful graphics packagesGives pointers on how to find, install, and use add-on packages created by the R communityProvides tips on getting additional help from R mailing lists and websitesWhether you're just starting out with statistical analysis or are a procedural programming pro, "R For Dummies" is the book you need to get the most out of R.

Effective Python: 59 Specific Ways to Write Better Python


Brett Slatkin - 2015
    This makes the book random-access: Items are easy to browse and study in whatever order the reader needs. I will be recommending "Effective Python" to students as an admirably compact source of mainstream advice on a very broad range of topics for the intermediate Python programmer. " Brandon Rhodes, software engineer at Dropbox and chair of PyCon 2016-2017" It s easy to start coding with Python, which is why the language is so popular. However, Python s unique strengths, charms, and expressiveness can be hard to grasp, and there are hidden pitfalls that can easily trip you up. " Effective Python " will help you master a truly Pythonic approach to programming, harnessing Python s full power to write exceptionally robust and well-performing code. Using the concise, scenario-driven style pioneered in Scott Meyers best-selling "Effective C++, " Brett Slatkin brings together 59 Python best practices, tips, and shortcuts, and explains them with realistic code examples. Drawing on years of experience building Python infrastructure at Google, Slatkin uncovers little-known quirks and idioms that powerfully impact code behavior and performance. You ll learn the best way to accomplish key tasks, so you can write code that s easier to understand, maintain, and improve. Key features includeActionable guidelines for all major areas of Python 3.x and 2.x development, with detailed explanations and examples Best practices for writing functions that clarify intention, promote reuse, and avoid bugs Coverage of how to accurately express behaviors with classes and objects Guidance on how to avoid pitfalls with metaclasses and dynamic attributes More efficient approaches to concurrency and parallelism Better techniques and idioms for using Python s built-in modules Tools and best practices for collaborative development Solutions for debugging, testing, and optimization in order to improve quality and performance "

Pro Git


Scott Chacon - 2009
    It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.

The Art of Readable Code


Dustin Boswell - 2010
    Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they’re bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it—even if that someone else is you.This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languages, each chapter dives into a different aspect of coding, and demonstrates how you can make your code easy to understand.Simplify naming, commenting, and formatting with tips that apply to every line of codeRefine your program’s loops, logic, and variables to reduce complexity and confusionAttack problems at the function level, such as reorganizing blocks of code to do one task at a timeWrite effective test code that is thorough and concise—as well as readable"Being aware of how the code you create affects those who look at it later is an important part of developing software. The authors did a great job in taking you through the different aspects of this challenge, explaining the details with instructive examples." —Michael Hunger, passionate Software Developer