Book picks similar to
Algebraic Graph Theory by Norman Biggs


mathematics
mmath
htc-book-catalogue
advanced-math

The Calculus Gallery: Masterpieces from Newton to Lebesgue


William Dunham - 2004
    This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. Students of literature read Shakespeare; students of music listen to Bach, he writes. But this tradition of studying the major works of the masters is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation.Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original category theorem (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.

Math on Trial: How Numbers Get Used and Abused in the Courtroom


Leila Schneps - 2013
    Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.

Once Upon A Number: The Hidden Mathematical Logic Of Stories


John Allen Paulos - 1998
    Good stories are full of life: they engage our emotions and have subtlety and nuance, but they lack rigor and the truths they tell are elusive and subject to debate. As ways of understanding the world around us, numbers and stories seem almost completely incompatible. Once Upon a Number shows that stories and numbers aren't as different as you might imagine, and in fact they have surprising and fascinating connections. The concepts of logic and probability both grew out of intuitive ideas about how certain situations would play out. Now, logicians are inventing ways to deal with real world situations by mathematical means -- by acknowledging, for instance, that items that are mathematically interchangeable may not be interchangeable in a story. And complexity theory looks at both number strings and narrative strings in remarkably similar terms. Throughout, renowned author John Paulos mixes numbers and narratives in his own delightful style. Along with lucid accounts of cutting-edge information theory we get hilarious anecdotes and jokes; instructions for running a truly impressive pyramid scam; a freewheeling conversation between Groucho Marx and Bertrand Russell (while they're stuck in an elevator together); explanations of why the statistical evidence against OJ Simpson was overwhelming beyond doubt and how the Unabomber's thinking shows signs of mathematical training; and dozens of other treats. This is another winner from America's favorite mathematician.

The Book of Numbers: The Secret of Numbers and How They Changed the World


Peter J. Bentley - 2008
    Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Chance: A Guide to Gambling, Love, the Stock Market, and Just About Everything Else


Amir D. Aczel - 2003
    Aczel turns his sights on probability theory -- the branch of mathematics that measures the likelihood of a random event. He explains probability in clear, layman's terms, and shows its practical applications. What is commonly called luck has mathematical roots and in Chance, you'll learn to increase your odds of success in everything from true love to the stock market. For thousands of years, the twin forces of chance and mischance have beguiled humanity like none other. Why does fortune smile on some people, and smirk on others? What is luck, and why does it so often visit the undeserving? How can we predict the random events happening around us? Even better, how can we manipulate them? In this delightful and lucid voyage through the realm of the random, Dr. Aczel once again makes higher mathematics intelligible to us.

Q.E.D.: Beauty in Mathematical Proof


Burkard Polster - 2004
    presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Calculus with Analytic Geometry


Earl W. Swokowski - 1979
    

Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."

Thinking Statistically


Uri Bram - 2011
    Along the way we’ll learn how selection bias can explain why your boss doesn’t know he sucks (even when everyone else does); how to use Bayes’ Theorem to decide if your partner is cheating on you; and why Mark Zuckerberg should never be used as an example for anything. See the world in a whole new light, and make better decisions and judgements without ever going near a t-test. Think. Think Statistically.

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

Algebra


Israel M. Gelfand - 1992
    This is a very old science and its gems have lost their charm for us through everyday use. We have tried in this book to refresh them for you. The main part of the book is made up of problems. The best way to deal with them is: Solve the problem by yourself - compare your solution with the solution in the book (if it exists) - go to the next problem. However, if you have difficulties solving a problem (and some of them are quite difficult), you may read the hint or start to read the solution. If there is no solution in the book for some problem, you may skip it (it is not heavily used in the sequel) and return to it later. The book is divided into sections devoted to different topics. Some of them are very short, others are rather long. Of course, you know arithmetic pretty well. However, we shall go through it once more, starting with easy things. 2 Exchange of terms in addition Let's add 3 and 5: 3+5=8. And now change the order: 5+3=8. We get the same result. Adding three apples to five apples is the same as adding five apples to three - apples do not disappear and we get eight of them in both cases. 3 Exchange of terms in multiplication Multiplication has a similar property. But let us first agree on notation.

Statistics Essentials for Dummies


Deborah J. Rumsey - 2010
    Free of review and ramp-up material, Statistics Essentials For Dummies sticks to the point, with content focused on key course topics only. It provides discrete explanations of essential concepts taught in a typical first semester college-level statistics course, from odds and error margins to confidence intervals and conclusions. This guide is also a perfect reference for parents who need to review critical statistics concepts as they help high school students with homework assignments, as well as for adult learners headed back into the classroom who just need a refresher of the core concepts. The Essentials For Dummies Series Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions


Michael G. Milton - 2009
    If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

Network Science


Albert-László Barabási