Life After Death, Powerful Evidence You Will Never Die


Stephen Hawley Martin - 2015
    He spent two years gathering information that demonstrates this and along the way interviewed more than a hundred experts in a number of different fields. Among them were parapsychologists, medical doctors, psychologists, psychiatrists, quantum physicists, and researchers into the true nature of reality. Specific examples are presented that indicate what happens when we die, for example that memories can be formed and retained despite a subject’s brain having been shutdown and the blood drained from it. Questions such as whether or not you will be able to communicate with living loved ones after death are addressed, if it is possible to be reborn, and what might be missing from reproductive theory to explain the various phenomena indicated in the many case histories and scientific investigations presented. All of us will someday cross the border to what Shakespeare called "The undiscovered country." As long as we must make that trip, wouldn’t it be smart to find out where we are going and what to expect when we get there?

Mathematical Mysteries: The Beauty and Magic of Numbers


Calvin C. Clawson - 1996
    This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.

Schaum's Outline of Complex Variables


Murray R. Spiegel - 1968
    Contains 640 problems including solutions; additional practice problems with answers; explanations of complex variable theory; coverage of applications of complex variables in engineering, physics, and elsewhere, with accompanying sample problems and solutions.

What Is Mathematics, Really?


Reuben Hersh - 1997
    Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the humanist idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos.What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.

Irreligion: A Mathematician Explains Why the Arguments for God Just Don't Add Up


John Allen Paulos - 2007
    In Irreligion he presents the case for his own worldview, organizing his book into twelve chapters that refute the twelve arguments most often put forward for believing in God's existence. The latter arguments, Paulos relates in his characteristically lighthearted style, "range from what might be called golden oldies to those with a more contemporary beat. On the playlist are the firstcause argument, the argument from design, the ontological argument, arguments from faith and biblical codes, the argument from the anthropic principle, the moral universality argument, and others." Interspersed among his twelve counterarguments are remarks on a variety of irreligious themes, ranging from the nature of miracles and creationist probability to cognitive illusions and prudential wagers. Special attention is paid to topics, arguments, and questions that spring from his incredulity "not only about religion but also about others' credulity." Despite the strong influence of his day job, Paulos says, there isn't a single mathematical formula in the book.

Common Sense, the Turing Test, and the Quest for Real AI


Hector J. Levesque - 2017
    AI is all the rage, and the buzziest AI buzz surrounds adaptive machine learning computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to -good old fashioned artificial intelligence, - which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns -- as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk.Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence -- the Winograd Schema Test, developed by Levesque and his colleagues. -If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it, - he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

The Heretic's Handbook (Kindle Single)


Jonathan Black - 2017
    An acclaimed author and public speaker, Black shows how this body of knowledge has been declared ‘heretical’ both by the established church and by today’s atheistic intellectual elite.Finally, he outlines in the clearest terms possible the supernatural laws that govern our universe, and describes rules for living that take us beyond consensual thought, rules that may at first seem crazy, even dangerous, but which contain the secrets for achieving success, happiness and a higher state of being.

Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.

CK-12 Trigonometry


CK-12 Foundation - 2010
    Topics include: Trigonometric Identities & Equations, Circular Functions, and Polar Equations & Complex Numbers.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time


Jason Socrates Bardi - 2006
    But a dispute over its discovery sowed the seeds of discontent between two of the greatest scientific giants of all time - Sir Isaac Newton and Gottfried Wilhelm Leibniz." "Today Newton and Leibniz are generally considered the twin independent inventors of calculus. They are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret." This long and bitter dispute has been swept under the carpet by historians - perhaps because it reveals Newton and Leibniz in their worst light - but The Calculus Wars tells the full story in narrative form for the first time. This history ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad, and in the end completely human.

Discrete Mathematical Structures


Bernard Kolman - 1995
    It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.

Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets


David Papineau - 2012
    Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.

The Golden Ratio: The Story of Phi, the World's Most Astonishing Number


Mario Livio - 2002
    In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!The Golden Ratio is a captivating journey through art and architecture, botany and biology, physics and mathematics. It tells the human story of numerous phi-fixated individuals, including the followers of Pythagoras who believed that this proportion revealed the hand of God; astronomer Johannes Kepler, who saw phi as the greatest treasure of geometry; such Renaissance thinkers as mathematician Leonardo Fibonacci of Pisa; and such masters of the modern world as Goethe, Cezanne, Bartok, and physicist Roger Penrose. Wherever his quest for the meaning of phi takes him, Mario Livio reveals the world as a place where order, beauty, and eternal mystery will always coexist.From the Hardcover edition.