Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
The Art of Readable Code
Dustin Boswell - 2010
Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they’re bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it—even if that someone else is you.This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languages, each chapter dives into a different aspect of coding, and demonstrates how you can make your code easy to understand.Simplify naming, commenting, and formatting with tips that apply to every line of codeRefine your program’s loops, logic, and variables to reduce complexity and confusionAttack problems at the function level, such as reorganizing blocks of code to do one task at a timeWrite effective test code that is thorough and concise—as well as readable"Being aware of how the code you create affects those who look at it later is an important part of developing software. The authors did a great job in taking you through the different aspects of this challenge, explaining the details with instructive examples." —Michael Hunger, passionate Software Developer
Designing Data-Intensive Applications
Martin Kleppmann - 2015
Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
Introducing Python: Modern Computing in Simple Packages
Bill Lubanovic - 2013
In addition to giving a strong foundation in the language itself, Lubanovic shows how to use it for a range of applications in business, science, and the arts, drawing on the rich collection of open source packages developed by Python fans.It's impressive how many commercial and production-critical programs are written now in Python. Developed to be easy to read and maintain, it has proven a boon to anyone who wants applications that are quick to write but robust and able to remain in production for the long haul.This book focuses on the current version of Python, 3.x, while including sidebars about important differences with 2.x for readers who may have to deal with programs in that version.
The Hacker Crackdown: Law and Disorder on the Electronic Frontier
Bruce Sterling - 1992
A journalist investigates the past, present, and future of computer crimes, as he attends a hacker convention, documents the extent of the computer crimes, and presents intriguing facts about hackers and their misdoings.
A Whirlwind Tour of Python
Jake Vanderplas - 2016
This report provides a brief yet comprehensive introduction to Python for engineers, researchers, and data scientists who are already familiar with another programming language.Author Jake VanderPlas, an interdisciplinary research director at the University of Washington, explains Python’s essential syntax and semantics, built-in data types and structures, function definitions, control flow statements, and more, using Python 3 syntax.You’ll explore:- Python syntax basics and running Python codeBasic semantics of Python variables, objects, and operators- Built-in simple types and data structures- Control flow statements for executing code blocks conditionally- Methods for creating and using reusable functionsIterators, list comprehensions, and generators- String manipulation and regular expressions- Python’s standard library and third-party modules- Python’s core data science tools- Recommended resources to help you learn more
Getting Real: The Smarter, Faster, Easier Way to Build a Web Application
37 Signals - 2006
At under 200 pages it's quick reading too. Makes a great airplane book.
Python Tricks: A Buffet of Awesome Python Features
Dan Bader - 2017
Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today.
Who Should Read This Book:
If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review.
If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2.
If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista.
If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge.
What Python Developers Say About The Book:
"I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.
The Past Present and Future of JavaScript
Axel Rauschmayer - 2012
Now, hopes and expectations for JavaScript’s future are considerable.In this insightful report, Dr. Axel Rauschmayer explains how the combination of several technologies and opportunities in the past 15 years turned JavaScript’s fortunes. With that as a backdrop, he provides a detailed look at proposed new features and fixes in the next version, ECMAScript.next, and then presents his own JavaScript wish list—such as an integrated IDE.
Seven Concurrency Models in Seven Weeks: When Threads Unravel
Paul Butcher - 2014
Concurrency and parallelism are the keys, and Seven Concurrency Models in Seven Weeks equips you for this new world. See how emerging technologies such as actors and functional programming address issues with traditional threads and locks development. Learn how to exploit the parallelism in your computer's GPU and leverage clusters of machines with MapReduce and Stream Processing. And do it all with the confidence that comes from using tools that help you write crystal clear, high-quality code. This book will show you how to exploit different parallel architectures to improve your code's performance, scalability, and resilience. Learn about the perils of traditional threads and locks programming and how to overcome them through careful design and by working with the standard library. See how actors enable software running on geographically distributed computers to collaborate, handle failure, and create systems that stay up 24/7/365. Understand why shared mutable state is the enemy of robust concurrent code, and see how functional programming together with technologies such as Software Transactional Memory (STM) and automatic parallelism help you tame it. You'll learn about the untapped potential within every GPU and how GPGPU software can unleash it. You'll see how to use MapReduce to harness massive clusters to solve previously intractible problems, and how, in concert with Stream Processing, big data can be tamed. With an understanding of the strengths and weaknesses of each of the different models and hardware architectures, you'll be empowered to tackle any problem with confidence.What You Need: The example code can be compiled and executed on *nix, OS X, or Windows. Instructions on how to download the supporting build systems are given in each chapter.
Learning XML
Erik T. Ray - 2001
Fortunately, there s a solution: Erik T. Ray s Learning XML, Second Edition. This book presents an outstanding birds-eye view of the XML landscape. It s definitely not a programming book (though it does introduce some key XML programming issues). Rather, it s focused on key ideas you need to understand whatever you want to do with XML. That could be document management, web or print content delivery, application integration, B2B commerce, data storage, internationalization -- you name it.Ray s day job is software developer and XML specialist at O Reilly. There, he s helped to implement a complete publishing solution, using DocBook-XML and Perl to produce books in print, on CD-ROM, and for online delivery. So he understands XML from the real-world point of view of someone with a job to do. His first goal is to take on the big questions. First, What is XML? Ray attacks this question from multiple angles, introducing XML as a general-purpose information storage system, a markup language toolkit, and an open standard (or, increasingly, a collection of standards). What can (and can t) you do with XML? What s the history that led us here? And what tools do you need to get started? Next, he introduces the basic building blocks of XML markup and all XML-derived languages: stuff you ll need to know regardless of your goals. Through easy examples, you ll understand elements, attributes, entities, and processing instructions -- and how they fit together in a well-formed XML document. Then, it s on to representing information with XML -- in other words, understanding the nature and planning the structure of the documents you ll be using. Ray starts simply, then builds on his basic examples to discuss narrative documents with text flows, block and inline elements, and titled sections. Once you can handle those, he discusses more complex information modeling, as used in specialized markup languages such as VML. This edition contains an entirely new chapter on XML Schemas -- what he calls the shepherds that keep documents from straying outside of the herd and causing trouble. Schemas, of course, have become hugely important. This is one of the best plain-English introductions to the topic we ve seen. Ray then turns to presentation, introducing CSS stylesheets, basic usage, rule matching, properties, and more. A little later on, he returns to the subject -- this time with a complete introduction to XSL-FO that illuminates two powerful examples. The first is TEI-XML, a markup language for scholarly documents (Ray presents a Shakespearean sonnet, appropriately coded). The second is the immensely powerful DocBook -- which, as we ve observed, Ray knows inside and out. Learning XML is superbly written. Clear explanations. Simple examples. Great metaphors and analogies. And excellent introductions to nearly every topic that matters, from links to presentation, transformation to internationalization. If you re just starting out with XML, you re lucky to have it. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Invent Your Own Computer Games with Python
Al Sweigart - 2009
The 3rd edition is now available for sale or download. * * * * "Invent Your Own Computer Games with Python" teaches you computer programming in the Python programming language. Each chapter gives you the complete source code for a new game and teaches the programming concepts from these examples. The book is available under a Creative Commons license and can be downloaded in full for free from http: //inventwithpython.com "Invent with Python" was written to be understandable by kids as young as 10 to 12 years old, although it is great for anyone of any age who has never programmed before. This second edition has revised and expanded content, including using the Pygame library to make games with graphics, animation, and sound.
Absolute Beginner's Guide to C
Greg Perry - 1993
This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.