Computational Complexity


Sanjeev Arora - 2007
    Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

The Logical Leap: Induction in Physics


David Harriman - 2010
    Inspired by and expanding on a series of lectures presented by Leonard Peikoff, David Harriman presents a fascinating answer to the problem of induction-the epistemological question of how we can know the truth of inductive generalizations.Ayn Rand presented her revolutionary theory of concepts in her book Introduction to Objectivist Epistemology. As Dr. Peikoff subsequently explored the concept of induction, he sought out David Harriman, a physicist who had taught philosophy, for his expert knowledge of the scientific discovery process.Here, Harriman presents the result of a collaboration between scientist and philosopher. Beginning with a detailed discussion of the role of mathematics and experimentation in validating generalizations in physics-looking closely at the reasoning of scientists such as Galileo, Kepler, Newton, Lavoisier, and Maxwell-Harriman skillfully argues that the inductive method used in philosophy is in principle indistinguishable from the method used in physics.

Physical Chemistry: A Molecular Approach


Donald A. McQuarrie - 1997
    It covers all relevant areas, including molecular spectroscopy, electronic structure computations, molecular beam methods and time-resolved measurements of chemical systems.

Elementary Analysis: The Theory of Calculus


Kenneth A. Ross - 1980
    It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

Solving Mathematical Problems: A Personal Perspective


Terence Tao - 2006
    Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.

Mathematical Methods in the Physical Sciences


Mary L. Boas - 1967
    Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.

String, Straightedge, and Shadow: The Story of Geometry


Julia E. Diggins - 1965
    Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.

The Principles of Mathematics


Bertrand Russell - 1903
    Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

First You Build a Cloud: And Other Reflections on Physics as a Way of Life


K.C. Cole - 1999
    In First You Build a Cloud, K. C. Cole provides cogent explanations through animated prose, metaphors, and anecdotes, allowing us to comprehend the nuances of physics-gravity and light, color and shape, quarks and quasars, particles and stars, force and strength. We also come to see how the physical world is so deeply intertwined with the ways in which we think about culture, poetry, and philosophy. Cole, one of our preeminent science writers, serves as a guide into the world of such legendary scientific minds as Richard Feynman, Victor Weisskopf, brothers Frank Oppenheimer and J. Robert Oppenheimer, Philip Morrison, Vera Kistiakowsky, and Stephen Jay Gould.

Introduction to Robotics: Mechanics and Control


John J. Craig - 1985
    This edition features new material on Controls, Computer-Aided Design and Manufacturing, and Off-Line Programming Systems.

Mathematics: Is God Silent?


James Nickel - 2001
    The addition of this book is a must for all upper-level Christian school curricula and for college students and adults interested in math or related fields of science and religion. It will serve as a solid refutation for the claim, often made in court, that mathematics is one subject, which cannot be taught from a distinctively Biblical perspective.

Isaac Newton


Gale E. Christianson - 1996
    Now, in this fast-paced, colorful biography, Gale E. Christianson paints anengaging portrait of Newton and the times in which he lived. We follow Newton from his childhood in rural England to his student days at Cambridge, where he devoured the works of Copernicus, Kepler, and Galileo, and taught himself mathematics. There ensued two miraculous years at home in Woolsthorpe Manor, where he fled when plague threatened Cambridge, aremarkably fertile period when Newton formulated his theory of gravity, a new theory of light, and calculus--all by his twenty-fourth birthday. Christianson describes Newton's creation of the first working model of the reflecting telescope, which brought him to the attention of the Royal Society, and he illuminates the eighteen months of intense labor that resulted in his Principia, arguably the most important scientific work ever published. The book sheds light on Newton's later life as master of the mint in London, where he managed to convict and hang the arch criminal William Chaloner (aremarkable turn for a once reclusive scholar), and his presidency of the Royal Society, which he turned from a dilettante's club into an eminent scientific organization. Christianson also explores Newton's less savory side, including his long, bitter feud with Robert Hooke and the underhanded waythat Newton established his priority in the invention of calculus and tarnished Liebniz's reputation. Newton was an authentic genius with all too human faults. This book captures both sides of this truly extraordinary man.

Poetry of the Universe


Robert Osserman - 1995
    40 illustrations throughout.

Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics


Ramamurti Shankar - 2014
    Shankar, a well-known physicist and contagiously enthusiastic educator, was among the first to offer a course through the innovative Open Yale Course program. His popular online video lectures on introductory physics have been viewed over a million times. In this concise and self-contained book based on his online Yale course, Shankar explains the fundamental concepts of physics from Galileo’s and Newton’s discoveries to the twentieth-century’s revolutionary ideas on relativity and quantum mechanics.   The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. It provides an ideal introduction for college-level students of physics, chemistry, and engineering, for motivated AP Physics students, and for general readers interested in advances in the sciences. Instructor resources--including problem sets and sample examinations--and more information about Professor Shankar's course are available at http://oyc.yale.edu/physics/phys-200.