The Last Three Minutes: Conjectures About The Ultimate Fate Of The Universe


Paul C.W. Davies - 1995
    Armageddon. Doomsday. Since the dawn of time, man has wondered how the world would end. In The Last Three Minutes, Paul Davies reveals the latest theories. It might end in a whimper, slowly scattering into the infinite void. Then again, it might be yanked back by its own gravity and end in a catastrophic "Big Crunch." There are other, more frightening possibilities. We may be seconds away from doom at this very moment.Written in clear language that makes the cutting-edge science of quarks, neutrinos, wormholes, and metaverses accessible to the layman, The Last Three Minutes treats readers to a wide range of conjectures about the ultimate fate of the universe. Along the way, it takes the occasional divergent path to discuss some slightly less cataclysmic topics such as galactic colonization, what would happen if the Earth were struck by the comet Swift-Tuttle (a distinct possibility), the effects of falling in a black hole, and how to create a "baby universe." Wonderfully morbid to the core, this is one of the most original science books to come along in years.

History of Astronomy


George Forbes - 1909
    Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

What Is Relativity?: An Intuitive Introduction to Einstein's Ideas, and Why They Matter


Jeffrey O. Bennett - 2014
    Yet as bestselling author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in hand, Bennett begins an entertaining introduction to Einstein's theories, describing the amazing phenomena readers would actually experience if they took a trip through a black hole.The theory of relativity also gives us the cosmic speed limit of the speed of light, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: e = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe, and it is not "just a theory: " every major prediction of relativity has been tested to exquisite precision and its practical applications include the Global Positioning System (GPS). Bennett proves anyone can understand the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important not only to science but also to the way we view ourselves as human beings.

Einstein's Clocks, Poincaré's Maps: Empires of Time


Peter Galison - 2003
    And two giants at the foundations of modern science were converging, step-by-step, on the answer: Albert Einstein, an young, obscure German physicist experimenting with measuring time using telegraph networks and with the coordination of clocks at train stations; and the renowned mathematician Henri Poincaré, president of the French Bureau of Longitude, mapping time coordinates across continents. Each found that to understand the newly global world, he had to determine whether there existed a pure time in which simultaneity was absolute or whether time was relative.Esteemed historian of science Peter Galison has culled new information from rarely seen photographs, forgotten patents, and unexplored archives to tell the fascinating story of two scientists whose concrete, professional preoccupations engaged them in a silent race toward a theory that would conquer the empire of time.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Einstein's Shadow: A Black Hole, a Band of Astronomers, and the Quest to See the Unseeable


Seth Fletcher - 2018
    But Shep Doeleman and a global coalition of scientists are on the cusp of doing just that.With exclusive access to the team, journalist Seth Fletcher spent five years following Shep and an extraordinary cast of characters as they assembled the Event Horizon Telescope, a virtual radio observatory the size of the Earth. He witnessed their struggles, setbacks, and breakthroughs, and along the way, he explored the latest thinking on the most profound questions about black holes. Do they represent a limit to our ability to understand reality? Or will they reveal the clues that lead to the long-sought Theory of Everything?Fletcher transforms astrophysics into something exciting, accessible, and immediate, taking us on an incredible adventure to better understand the complexity of our galaxy, the boundaries of human perception and knowledge, and how the messy human endeavor of science really works.Weaving a compelling narrative account of human ingenuity with excursions into cutting-edge science, Einstein’s Shadow is a tale of great minds on a mission to change the way we understand our universe—and our place in it.

Coming of Age in the Milky Way


Timothy Ferris - 1988
    From the first time mankind had an inkling of the vast space that surrounds us, those who study the universe have had to struggle against political and religious preconceptions. They have included some of the most charismatic, courageous, and idiosyncratic thinkers of all time. In Coming of Age in the Milky Way, Timothy Ferris uses his unique blend of rigorous research and captivating narrative skill to draw us into the lives and minds of these extraordinary figures, creating a landmark work of scientific history.

The Universe Within: From Quantum to Cosmos


Neil Turok - 2012
    Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come. In this personal and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries -- from classical mechanics, to the nature of light, to the bizarre world of the quantum, and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current, dissatisfying digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world. Scientific research, training, and outreach are vital to our future economy, as well as powerful forces for peaceful global progress.

Light in the Darkness: Black Holes, the Universe, and Us


Heino Falcke - 2020
    A man of faith ordained in the Protestant tradition, Heino Falcke wrestles with the ways in which black holes force us to confront the boundary where human life ends and the celestial begins. He also ponders why black holes are difficult for most of us to understand—comparing it to our inability to envisage our own inevitable death.Black holes develop in outer space when a massive star dies, and its matter is condensed. That extreme amount of mass contained in a small space generates a gigantic amount of gravitational force, allowing the black hole to suck up everything that comes near, including light. These astronomical wonders are the subject of our greatest scientific and philosophical theorizing—the journey to a black hole would be the journey to the end of time itself. In this way, Falcke regards them as the most exquisite representations of fear, death . . . and, surprisingly, the divine.Empirical and profound, A Light in the Darkness is the first work to examine both the physical nature and spiritual meaning of black holes, those astrophysical mysteries Falcke, calls “the epitome of merciless destruction.”

The Physics of Star Trek


Lawrence M. Krauss - 1995
    Now Lawrence M. Krauss, an internationally known theoretical physicist and educator, has written the quintessential physics book for Trekkers and non-Trekkers alike.Anyone who has ever wondered, "Could this really happen?" will gain useful insights into the "Star Trek" universe (and, incidentally, the real universe) in this charming and accessible volume. Krauss boldly goes where "Star Trek" has gone -- and beyond. He uses the "Star Trek" future as a launching pad to discuss the forefront of modern physics. From Newton to Hawking, from Einstein to Feynman, from Kirk to Janeway, Krauss leads the reader on a voyage to the world of physics as we now know it and as it might one day be.Featuring the Top 10 biggest physics bloopers in "Star Trek," as selected by Nobel Prize-winning physicists and other dedicated Trekkers!"This book is fun, and Mr. Krauss has a nice touch with a tough subject...Readers drawn by frivolity will be treated to substance." "--New York Times Book Review""Today's science fiction is often tomorrow's science fact. The physics that underlies "Star Trek" is surely worth investigating. To confine our attention to terrestrial matters would be to limit the human spirit."--Stephen Hawking (in the foreword)A

Reality is Not What it Seems: The Journey to Quantum Gravity


Carlo Rovelli - 2014
    Here he explains how our image of the world has changed throughout centuries. Fom Aristotle to Albert Einstein, Michael Faraday to the Higgs boson, he takes us on a wondrous journey to show us that beyond our ever-changing idea of reality is a whole new world that has yet to be discovered.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

The Cosmic Landscape: String Theory and the Illusion of Intelligent Design


Leonard Susskind - 2005
    Line drawings.