Baseball Between the Numbers: Why Everything You Know About the Game Is Wrong


Jonah Keri - 2006
    Properly understood, they can tell us how the teams we root for could employ better strategies, put more effective players on the field, and win more games. The revolution in baseball statistics that began in the 1970s is a controversial subject that professionals and fans alike argue over without end. Despite this fundamental change in the way we watch and understand the sport, no one has written the book that reveals, across every area of strategy and management, how the best practitioners of statistical analysis in baseball-people like Bill James, Billy Beane, and Theo Epstein-think about numbers and the game. Baseball Between the Numbers is that book. In separate chapters covering every aspect of the game, from hitting, pitching, and fielding to roster construction and the scouting and drafting of players, the experts at Baseball Prospectus examine the subtle, hidden aspects of the game, bring them out into the open, and show us how our favorite teams could win more games. This is a book that every fan, every follower of sports radio, every fantasy player, every coach, and every player, at every level, can learn from and enjoy.

The Complete Idiot's Guide to Statistics


Robert A. Donnelly Jr. - 2004
    Readerswill find information on frequency distributions; mean, median, and mode; range, variance, and standard deviation;probability; and more.-Emphasizes Microsoft Excel for number-crunching and computationsDownload a sample chapter.

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

Statistics: A Very Short Introduction


David J. Hand - 2008
    From randomized clinical trials in medical research, to statistical models of risk in banking and hedge fund industries, to the statistical tools used to probe vast astronomical databases, the field of statistics has become centrally important to how we understand our world. But the discipline underlying all these is not the dull statistics of the popular imagination. Long gone are the days of manual arithmetic manipulation. Nowadays statistics is a dynamic discipline, revolutionized by the computer, which uses advanced software tools to probe numerical data, seeking structures, patterns, and relationships. This Very Short Introduction sets the study of statistics in context, describing its history and giving examples of its impact, summarizes methods of gathering and evaluating data, and explains the role played by the science of chance, of probability, in statistical methods. The book also explores deep philosophical issues of induction--how we use statistics to discern the true nature of reality from the limited observations we necessarily must make.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Facts and Mysteries in Elementary Particle Physics


Martinus Veltman - 2003
    We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the elusive Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed “superbly lucid” by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).

59 Seconds: Think a Little, Change a Lot


Richard Wiseman - 2009
    From mood to memory, persuasion to procrastination, and resilience to relationships, Wiseman outlines the research supporting this new science of rapid change, and describes how these quick and quirky techniques can be incorporated into everyday life. Think a little, change a lot."Discover why even thinking about going to the gym can help you keep in shape ""Learn how pot plants make you more creative ""Find out why putting a pencil between your teeth instantly makes you happier "" "'At last, a self-help guide that is based on proper research. Perfect for busy, curious, smart people' Simon Singh, author of Fermat's Last Theorem'A triumph of scientifically proven advice over misleading myths of self-help. Challenging, uplifting and long overdue' Derren Brown

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Structure and Interpretation of Computer Programs


Harold Abelson - 1984
    This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Research and Evaluation in Education and Psychology: Integrating Diversity with Quantitative, Qualitative, and Mixed Methods


Donna M. Mertens - 1997
    Donna is so sensitive in exploring those issues, a first in a text for that class and a welcome addition.--Nick Eastmond, Utah State UniversityFocused on discussing what is considered to be good research, this text explains quantitative, qualitative, and mixed methods in detail, incorporating the viewpoints of various research paradigms into the descriptions of these methods. Approximately 60% of the content in this Third Edition is new, with lots of fresh examples.Key FeaturesPostpositivist, constructivist, transformative, and pragmatic paradigms discussedConducting research in culturally complex communities emphasized throughoutA step-by-step overview of the entire research process providedNew to this Edition New coverage on how to write a literature review and plan a dissertationNew pedagogy including Extending Your Thinking throughoutThis is a core or supplemental text for research courses in departments of education, psychology, sociology, social work and other human-services disciplines.

Statistics for People Who (Think They) Hate Statistics


Neil J. Salkind - 2000
    The book begins with an introduction to the language of statistics and then covers descriptive statistics and inferential statistics. Throughout, the author offers readers:- Difficulty Rating Index for each chapter′s material- Tips for doing and thinking about a statistical technique- Top tens for everything from the best ways to create a graph to the most effective techniques for data collection- Steps that break techniques down into a clear sequence of procedures- SPSS tips for executing each major statistical technique- Practice exercises at the end of each chapter, followed by worked out solutions.The book concludes with a statistical software sampler and a description of the best Internet sites for statistical information and data resources. Readers also have access to a website for downloading data that they can use to practice additional exercises from the book. Students and researchers will appreciate the book′s unhurried pace and thorough, friendly presentation.

The Manga Guide to Statistics


Shin Takahashi - 2008
    With its unique combination of Japanese-style comics called manga and serious educational content, the EduManga format is already a hit in Japan.In The Manga Guide to Statistics, our heroine Rui is determined to learn about statistics to impress the dreamy Mr. Igarashi and begs her father for a tutor. Soon she's spending her Saturdays with geeky, bespectacled Mr. Yamamoto, who patiently teaches her all about the fundamentals of statistics: topics like data categorization, averages, graphing, and standard deviation.After all her studying, Rui is confident in her knowledge of statistics, including complex concepts like probability, coefficients of correlation, hypothesis tests, and tests of independence. But is it enough to impress her dream guy? Or maybe there's someone better, right in front of her?Reluctant statistics students of all ages will enjoy learning along with Rui in this charming, easy-to-read guide, which uses real-world examples like teen magazine quizzes, bowling games, test scores, and ramen noodle prices. Examples, exercises, and answer keys help you follow along and check your work. An appendix showing how to perform statistics calculations in Microsoft Excel makes it easy to put Rui's lessons into practice.This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.

HBR Guide to Data Analytics Basics for Managers (HBR Guide Series)


Harvard Business Review - 2018
    Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started?Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others.You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

The Model Thinker: What You Need to Know to Make Data Work for You


Scott E. Page - 2018
    But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.