Book picks similar to
Principia Mathematica to '56 by Alfred North Whitehead
philosophy
mathematics
science
math
The Mathematical Theory of Communication
Claude Shannon - 1949
Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.
Syntactic Structures
Noam Chomsky - 1957
It is not a mere reorganization of the data into a new kind of library catalogue, nor another specualtive philosophy about the nature of man and language, but rather a rigorus explication of our intuitions about our language in terms of an overt axiom system, the theorems derivable from it, explicit results which may be compared with new data and other intuitions, all based plainly on an overt theory of the internal structure of languages; and it may well provide an opportunity for the application of explicity measures of simplicity to decide preference of one form over another form of grammar.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
It's a Numberful World: How Math Is Hiding Everywhere
Eddie Woo - 2019
. . like a pendulum? These may not look like math questions, but they are-because they all have to do with patterns. And mathematics, at heart, is the study of patterns. That realization changed Eddie Woo's life-by turning the "dry" subject he dreaded in high school into a boundless quest for discovery. Now an award-winning math teacher, Woo sees patterns everywhere: in the "branches" of blood vessels and lightning, in the growth of a savings account and a sunflower, even in his morning cup of tea! Here are twenty-six bite-size chapters on the hidden mathematical marvels that encrypt our email, enchant our senses, and even keep us alive-from the sine waves we hear as "music" to the mysterious golden ratio. This book will change your mind about what math can be. We are all born mathematicians-and It's a Numberful World.
Gamma: Exploring Euler's Constant
Julian Havil - 2003
Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
Asimov on Numbers
Isaac Asimov - 1978
From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
John Derbyshire - 2003
Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.
Book of Proof
Richard Hammack - 2009
It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.
The Infinite Book: A Short Guide to the Boundless, Timeless and Endless
John D. Barrow - 2005
It certainly is the strangest idea that humans have ever thought. Where did it come from and what is it telling us about our Universe? Can there actually be infinities? Is matter infinitely divisible into ever-smaller pieces? But infinity is also the place where things happen that don't. All manner of strange paradoxes and fantasies characterize an infinite universe. If our Universe is infinite then an infinite number of exact copies of you are, at this very moment, reading an identical sentence on an identical planet somewhere else in the Universe. Now Infinity is the darling of cutting edge research, the measuring stick used by physicists, cosmologists, and mathematicians to determine the accuracy of their theories. From the paradox of Zeno’s arrow to string theory, Cambridge professor John Barrow takes us on a grand tour of this most elusive of ideas and describes with clarifying subtlety how this subject has shaped, and continues to shape, our very sense of the world in which we live. The Infinite Book is a thoroughly entertaining and completely accessible account of the biggest subject of them all–infinity.
Logic: A Complete Introduction: Teach Yourself
Siu-Fan Lee - 2017
As well as looking at logic in theoretical terms the book considers its everyday uses and demonstrates how it has genuine practical applications. It will take you step by step through the most difficult concepts and is packed with exercises to help you consolidate your learning at every stage. Covering everything from syllogistic logic to logical paradoxes and even looking at logic in Alice in Wonderland, this is the only guide you will ever need.
A Brief History of Infinity: The Quest to Think the Unthinkable
Brian Clegg - 2003
Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it's a long way down the street to the chemist, but that's just peanuts to space.' Douglas Adams, Hitch-hiker's Guide to the GalaxyWe human beings have trouble with infinity - yet infinity is a surprisingly human subject. Philosophers and mathematicians have gone mad contemplating its nature and complexity - yet it is a concept routinely used by schoolchildren. Exploring the infinite is a journey into paradox. Here is a quantity that turns arithmetic on its head, making it feasible that 1 = 0. Here is a concept that enables us to cram as many extra guests as we like into an already full hotel. Most bizarrely of all, it is quite easy to show that there must be something bigger than infinity - when it surely should be the biggest thing that could possibly be. Brian Clegg takes us on a fascinating tour of that borderland between the extremely large and the ultimate that takes us from Archimedes, counting the grains of sand that would fill the universe, to the latest theories on the physical reality of the infinite. Full of unexpected delights, whether St Augustine contemplating the nature of creation, Newton and Leibniz battling over ownership of calculus, or Cantor struggling to publicise his vision of the transfinite, infinity's fascination is in the way it brings together the everyday and the extraordinary, prosaic daily life and the esoteric.Whether your interest in infinity is mathematical, philosophical, spiritual or just plain curious, this accessible book offers a stimulating and entertaining read.
Introduction to Topology
Bert Mendelson - 1975
It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.
e: the Story of a Number
Eli Maor - 1993
Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.
The Nothing That Is: A Natural History of Zero
Robert M. Kaplan - 1999
As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.