The Art of Readable Code


Dustin Boswell - 2010
    Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they’re bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it—even if that someone else is you.This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languages, each chapter dives into a different aspect of coding, and demonstrates how you can make your code easy to understand.Simplify naming, commenting, and formatting with tips that apply to every line of codeRefine your program’s loops, logic, and variables to reduce complexity and confusionAttack problems at the function level, such as reorganizing blocks of code to do one task at a timeWrite effective test code that is thorough and concise—as well as readable"Being aware of how the code you create affects those who look at it later is an important part of developing software. The authors did a great job in taking you through the different aspects of this challenge, explaining the details with instructive examples." —Michael Hunger, passionate Software Developer

The Complete Software Developer's Career Guide: How to Learn Programming Languages Quickly, Ace Your Programming Interview, and Land Your Software Developer Dream Job


John Z. Sonmez - 2017
    As John invested in these skills his career took off, and he became a highly paid, highly sought-after developer and consultant. Today John helps more than 1.4 million programmers every year to increase their income by developing this unique blend of skills. "If you're a developer, green or a veteran, you owe it to yourself to read The Complete Software Developers Career Guide." - Jason Down, Platform Developer, Ontario, Canada What You Will Learn in This Book How to systematically find and fill the gaps in your technical knowledge so you can face any new challenge with confidence Should you take contract work - or hold out for a salaried position? Which will earn you more, what the tradeoffs are, and how your personality should sway your choice Should you learn JavaScript, C#, Python, C++? How to decide which programming language you should master first Ever notice how every job ever posted requires "3-5 years of experience," which you don't have? Simple solution for this frustrating chicken-and-egg problem that allows you to build legitimate job experience while you learn to code Is earning a computer science degree a necessity - or a total waste of time? How to get a college degree with maximum credibility and minimum debt Coding bootcampssome are great, some are complete scams. How to tell the difference so you don't find yourself cheated out of $10,000 Interviewer tells you, "Dress code is casual around here - the development team wears flipflops." What should you wear? How do you deal with a boss who's a micromanager. Plus how helping your manager with his goals can make you the MVP of your team The technical skills that every professional developer must have - but no one teaches you (most developers are missing some critical pieces, they don't teach this stuff in college, you're expected to just "know" this) An inside look at the recruiting industry. What that "friendly" recruiter really wants from you, how they get paid, and how to avoid getting pigeonholed into a job you'll hate Who Should Read This Book Entry-Level Developers This book will show you how to ensure you have the technical skills your future boss is looking for, create a resume that leaps off a hiring manager's desk, and escape the "no work experience" trap. Mid-Career Developers You'll see how to find and fill in gaps in your technical knowledge, position yourself as the one team member your boss can't live without, and turn those dreaded annual reviews into chance to make an iron-clad case for your salary bump. Senior Developers This book will show you how to become a specialist who can command above-market wages, how building a name for yourself can make opportunities come to you, and how to decide whether consulting or entrepreneurship are paths you should pursue.

Learning Perl


Randal L. Schwartz - 1993
    Written by three prominent members of the Perl community who each have several years of experience teaching Perl around the world, this edition has been updated to account for all the recent changes to the language up to Perl 5.8.Perl is the language for people who want to get work done. It started as a tool for Unix system administrators who needed something powerful for small tasks. Since then, Perl has blossomed into a full-featured programming language used for web programming, database manipulation, XML processing, and system administration--on practically all platforms--while remaining the favorite tool for the small daily tasks it was designed for. You might start using Perl because you need it, but you'll continue to use it because you love it.Informed by their years of success at teaching Perl as consultants, the authors have re-engineered the Llama to better match the pace and scope appropriate for readers getting started with Perl, while retaining the detailed discussion, thorough examples, and eclectic wit for which the Llama is famous.The book includes new exercises and solutions so you can practice what you've learned while it's still fresh in your mind. Here are just some of the topics covered:Perl variable typessubroutinesfile operationsregular expressionstext processingstrings and sortingprocess managementusing third party modulesIf you ask Perl programmers today what book they relied on most when they were learning Perl, you'll find that an overwhelming majority will point to the Llama. With good reason. Other books may teach you to program in Perl, but this book will turn you into a Perl programmer.

Programming Game AI by Example


Mat Buckland - 2004
    Techniques covered include state- and goal-based behavior, inter-agent communication, individual and group steering behaviors, team AI, graph theory, search, path planning and optimization, triggers, scripting, scripted finite state machines, perceptual modeling, goal evaluation, goal arbitration, and fuzzy logic.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

OpenGL SuperBible: Comprehensive Tutorial and Reference


Richard S. Wright Jr. - 1996
    If you want to leverage OpenGL 2.1's major improvements, you really need the Fourth Edition. It's a comprehensive tutorial, systematic API reference, and massive code library, all in one. You'll start with the fundamental techniques every graphics programmer needs: transformations, lighting, texture mapping, and so forth. Then, building on those basics, you'll move towards newer capabilities, from advanced buffers to vertex shaders. Of course, OpenGL's cross-platform availability remains one of its most compelling features. This book's extensive multiplatform coverage has been thoroughly rewritten, and now addresses everything from Windows Vista to OpenGL ES for handhelds. This is stuff you absolutely want the latest edition for. A small but telling point: This book's recently been invited into Addison-Wesley's OpenGL Series, making it an "official" OpenGL book -- and making a powerful statement about its credibility. Bill Camarda, from the August 2007 href="http://www.barnesandnoble.com/newslet... Only

Programming Pearls


Jon L. Bentley - 1986
    Jon has done a wonderful job of updating the material. I am very impressed at how fresh the new examples seem." - Steve McConnell, author, Code CompleteWhen programmers list their favorite books, Jon Bentley's collection of programming pearls is commonly included among the classics. Just as natural pearls grow from grains of sand that irritate oysters, programming pearls have grown from real problems that have irritated real programmers. With origins beyond solid engineering, in the realm of insight and creativity, Bentley's pearls offer unique and clever solutions to those nagging problems. Illustrated by programs designed as much for fun as for instruction, the book is filled with lucid and witty descriptions of practical programming techniques and fundamental design principles. It is not at all surprising that Programming Pearls has been so highly valued by programmers at every level of experience. In this revision, the first in 14 years, Bentley has substantially updated his essays to reflect current programming methods and environments. In addition, there are three new essays on (1) testing, debugging, and timing; (2) set representations; and (3) string problems. All the original programs have been rewritten, and an equal amount of new code has been generated. Implementations of all the programs, in C or C++, are now available on the Web.What remains the same in this new edition is Bentley's focus on the hard core of programming problems and his delivery of workable solutions to those problems. Whether you are new to Bentley's classic or are revisiting his work for some fresh insight, this book is sure to make your own list of favorites.

Modern Operating Systems


Andrew S. Tanenbaum - 1992
    What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson

97 Things Every Programmer Should Know: Collective Wisdom from the Experts


Kevlin Henney - 2010
    With the 97 short and extremely useful tips for programmers in this book, you'll expand your skills by adopting new approaches to old problems, learning appropriate best practices, and honing your craft through sound advice.With contributions from some of the most experienced and respected practitioners in the industry--including Michael Feathers, Pete Goodliffe, Diomidis Spinellis, Cay Horstmann, Verity Stob, and many more--this book contains practical knowledge and principles that you can apply to all kinds of projects.A few of the 97 things you should know:"Code in the Language of the Domain" by Dan North"Write Tests for People" by Gerard Meszaros"Convenience Is Not an -ility" by Gregor Hohpe"Know Your IDE" by Heinz Kabutz"A Message to the Future" by Linda Rising"The Boy Scout Rule" by Robert C. Martin (Uncle Bob)"Beware the Share" by Udi Dahan

Programming Erlang


Joe Armstrong - 2007
    It's used worldwide by companies who need to produce reliable, efficient, and scalable applications. Invest in learning Erlang now.Moore's Law is the observation that the amount you can do on a single chip doubles every two years. But Moore's Law is taking a detour. Rather than producing faster and faster processors, companies such as Intel and AMD are producing multi-core devices: single chips containing two, four, or more processors. If your programs aren't concurrent, they'll only run on a single processor at a time. Your users will think that your code is slow.Erlang is a programming language designed for building highly parallel, distributed, fault-tolerant systems. It has been used commercially for many years to build massive fault-tolerated systems that run for years with minimal failures.Erlang programs run seamlessly on multi-core computers: this means your Erlang program should run a lot faster on a 4 core processor than on a single core processor, all without you having to change a line of code.Erlang combines ideas from the world of functional programming with techniques for building fault-tolerant systems to make a powerful language for building the massively parallel, networked applications of the future.This book presents Erlang and functional programming in the familiar Pragmatic style. And it's written by Joe Armstrong, one of the creators of Erlang.It includes example code you'll be able to build upon. In addition, the book contains the full source code for two interesting applications:A SHOUTcast server which you can use to stream music to every computer in your house, and a full-text indexing and search engine that can index gigabytes of data. Learn how to write programs that run on dozens or even hundreds of local and remote processors. See how to write robust applications that run even in the face of network and hardware failure, using the Erlang programming language.

Coders at Work: Reflections on the Craft of Programming


Peter Seibel - 2009
    As the words "at work" suggest, Peter Seibel focuses on how his interviewees tackle the day–to–day work of programming, while revealing much more, like how they became great programmers, how they recognize programming talent in others, and what kinds of problems they find most interesting. Hundreds of people have suggested names of programmers to interview on the Coders at Work web site: http://www.codersatwork.com. The complete list was 284 names. Having digested everyone’s feedback, we selected 16 folks who’ve been kind enough to agree to be interviewed:- Frances Allen: Pioneer in optimizing compilers, first woman to win the Turing Award (2006) and first female IBM fellow- Joe Armstrong: Inventor of Erlang- Joshua Bloch: Author of the Java collections framework, now at Google- Bernie Cosell: One of the main software guys behind the original ARPANET IMPs and a master debugger- Douglas Crockford: JSON founder, JavaScript architect at Yahoo!- L. Peter Deutsch: Author of Ghostscript, implementer of Smalltalk-80 at Xerox PARC and Lisp 1.5 on PDP-1- Brendan Eich: Inventor of JavaScript, CTO of the Mozilla Corporation - Brad Fitzpatrick: Writer of LiveJournal, OpenID, memcached, and Perlbal - Dan Ingalls: Smalltalk implementor and designer- Simon Peyton Jones: Coinventor of Haskell and lead designer of Glasgow Haskell Compiler- Donald Knuth: Author of The Art of Computer Programming and creator of TeX- Peter Norvig: Director of Research at Google and author of the standard text on AI- Guy Steele: Coinventor of Scheme and part of the Common Lisp Gang of Five, currently working on Fortress- Ken Thompson: Inventor of UNIX- Jamie Zawinski: Author of XEmacs and early Netscape/Mozilla hackerWhat you’ll learn:How the best programmers in the world do their jobWho is this book for?Programmers interested in the point of view of leaders in the field. Programmers looking for approaches that work for some of these outstanding programmers.

The C++ Programming Language


Bjarne Stroustrup - 1986
    For this special hardcover edition, two new appendixes on locales and standard library exception safety (also available at www.research.att.com/ bs/) have been added. The result is complete, authoritative coverage of the C++ language, its standard library, and key design techniques. Based on the ANSI/ISO C++ standard, The C++ Programming Language provides current and comprehensive coverage of all C++ language features and standard library components. For example:abstract classes as interfaces class hierarchies for object-oriented programming templates as the basis for type-safe generic software exceptions for regular error handling namespaces for modularity in large-scale software run-time type identification for loosely coupled systems the C subset of C++ for C compatibility and system-level work standard containers and algorithms standard strings, I/O streams, and numerics C compatibility, internationalization, and exception safety Bjarne Stroustrup makes C++ even more accessible to those new to the language, while adding advanced information and techniques that even expert C++ programmers will find invaluable.

The Mythical Man-Month: Essays on Software Engineering


Frederick P. Brooks Jr. - 1975
    With a blend of software engineering facts and thought-provoking opinions, Fred Brooks offers insight for anyone managing complex projects. These essays draw from his experience as project manager for the IBM System/360 computer family and then for OS/360, its massive software system. Now, 45 years after the initial publication of his book, Brooks has revisited his original ideas and added new thoughts and advice, both for readers already familiar with his work and for readers discovering it for the first time.The added chapters contain (1) a crisp condensation of all the propositions asserted in the original book, including Brooks' central argument in The Mythical Man-Month: that large programming projects suffer management problems different from small ones due to the division of labor; that the conceptual integrity of the product is therefore critical; and that it is difficult but possible to achieve this unity; (2) Brooks' view of these propositions a generation later; (3) a reprint of his classic 1986 paper "No Silver Bullet"; and (4) today's thoughts on the 1986 assertion, "There will be no silver bullet within ten years."