Book picks similar to
Explorations in Mathematical Physics: The Concepts Behind an Elegant Language by Don Koks
physics
mathematics
english
math
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Islamic Design: A Genius for Geometry
Daud Sutton - 2007
Harmony is central. There are two key aspects to the visual structure of Islamic design, calligraphy using Arabic script-one of the world's great calligraphic traditions-and abstract ornamentation using a varied but remarkably integrated visual language. This art of pure ornament revolves around two central themes; crystalline geometric patterns, the harmonic and symmetrical subdivision of the plane giving rise to intricately interwoven designs that speak of infinity and the omnipresent center; and idealized plant form, spiraling tendrils, leaves, buds and flowers embodying organic life and rhythm.1. WIDE APPEAL: Anyone interested in science, mathematics, design, architecture, and the natural world.2. AUTHORITATIVE: A compelling blend of scholarship and visual presentation, packs an enormous amount of information into a short space.3. BEAUTIFUL PACKAGE: A bargain at $10.00. Winner of First Prize for Nonfiction at the New York Book Show4. SERIES PURPOSE: All are aimed at bringing ancient wisdom forward into the 21st century.5. INSPIRING: The perfect entrée into a challenging topic; will inspire other reading.
A Book of Abstract Algebra
Charles C. Pinter - 1982
Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.
Poetry of the Universe
Robert Osserman - 1995
40 illustrations throughout.
Geometry, Relativity and the Fourth Dimension
Rudolf Rucker - 1977
A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to explain our three-dimensional world in terms of the fourth dimension. Following this adventure into the fourth dimension, the author discusses non-Euclidean geometry, curved space, time as a higher dimension, special relativity, time travel, and the shape of space-time. The mathematics is sound throughout, but the casual reader may skip those few sections that seem too purely mathematical and still follow the line of argument. Readable and interesting in itself, the annotated bibliography is a valuable guide to further study.Professor Rucker teaches mathematics at the State University of New York in Geneseo. Students and laymen will find his discussion to be unusually stimulating. Experienced mathematicians and physicists will find a great deal of original material here and many unexpected novelties. Annotated bibliography. 44 problems.
The Science of Information: From Language to Black Holes
Benjamin Schumacher - 2015
Never before in history have we been able to acquire, record, communicate, and use information in so many different forms. Never before have we had access to such vast quantities of data of every kind. This revolution goes far beyond the limitless content that fills our lives, because information also underlies our understanding of ourselves, the natural world, and the universe. It is the key that unites fields as different as linguistics, cryptography, neuroscience, genetics, economics, and quantum mechanics. And the fact that information bears no necessary connection to meaning makes it a profound puzzle that people with a passion for philosophy have pondered for centuries.Table of ContentsLECTURE 1The Transformability of Information 4LECTURE 2Computation and Logic Gates 17LECTURE 3Measuring Information 26LECTURE 4Entropy and the Average Surprise 34LECTURE 5Data Compression and Prefix-Free Codes 44LECTURE 6Encoding Images and Sounds 57LECTURE 7Noise and Channel Capacity 69LECTURE 8Error-Correcting Codes 82LECTURE 9Signals and Bandwidth 94LECTURE 10Cryptography and Key Entropy 110LECTURE 11Cryptanalysis and Unraveling the Enigma 119LECTURE 12Unbreakable Codes and Public Keys 130LECTURE 13What Genetic Information Can Do 140LECTURE 14Life’s Origins and DNA Computing 152LECTURE 15Neural Codes in the Brain 169LECTURE 16Entropy and Microstate Information 185LECTURE 17Erasure Cost and Reversible Computing 198LECTURE 18Horse Races and Stock Markets 213LECTURE 19Turing Machines and Algorithmic Information 226LECTURE 20Uncomputable Functions and Incompleteness 239LECTURE 21Qubits and Quantum Information 253LECTURE 22Quantum Cryptography via Entanglement 266LECTURE 23It from Bit: Physics from Information 281LECTURE 24The Meaning of Information 293
Introduction to Logic: and to the Methodology of Deductive Sciences
Alfred Tarski - 1993
According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.
Algebra
Israel M. Gelfand - 1992
This is a very old science and its gems have lost their charm for us through everyday use. We have tried in this book to refresh them for you. The main part of the book is made up of problems. The best way to deal with them is: Solve the problem by yourself - compare your solution with the solution in the book (if it exists) - go to the next problem. However, if you have difficulties solving a problem (and some of them are quite difficult), you may read the hint or start to read the solution. If there is no solution in the book for some problem, you may skip it (it is not heavily used in the sequel) and return to it later. The book is divided into sections devoted to different topics. Some of them are very short, others are rather long. Of course, you know arithmetic pretty well. However, we shall go through it once more, starting with easy things. 2 Exchange of terms in addition Let's add 3 and 5: 3+5=8. And now change the order: 5+3=8. We get the same result. Adding three apples to five apples is the same as adding five apples to three - apples do not disappear and we get eight of them in both cases. 3 Exchange of terms in multiplication Multiplication has a similar property. But let us first agree on notation.
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.
Principles of Statistics
M.G. Bulmer - 1979
There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.
Adventures of a Computational Explorer
Stephen Wolfram - 2019
In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu - 2006
Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
General Relativity
Robert M. Wald - 1984
The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement"Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
Q.E.D.: Beauty in Mathematical Proof
Burkard Polster - 2004
presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Introduction to Quantum Mechanics with Applications to Chemistry
Linus Pauling - 1985
Numerous tables and figures.