Functional Programming in Scala


Rúnar Bjarnason - 2013
    As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics


Paul Teetor - 2011
    The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author

Numerical Methods for Scientists and Engineers


Richard Hamming - 1973
    Book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include: Fundamentals and Algorithms; Polynomial Approximation — Classical Theory; Fourier Approximation — Modern Theory; and Exponential Approximation.

Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design


Michael J. Hernandez - 1996
    You d be up to your neck in normal forms before you even had a chance to wade. When Michael J. Hernandez needed a database design book to teach mere mortals like himself, there were none. So he began a personal quest to learn enough to write one. And he did.Now in its Second Edition, Database Design for Mere Mortals is a miracle for today s generation of database users who don t have the background -- or the time -- to learn database design the hard way. It s also a secret pleasure for working pros who are occasionally still trying to figure out what they were taught.Drawing on 13 years of database teaching experience, Hernandez has organized database design into several key principles that are surprisingly easy to understand and remember. He illuminates those principles using examples that are generic enough to help you with virtually any application.Hernandez s goals are simple. You ll learn how to create a sound database structure as easily as possible. You ll learn how to optimize your structure for efficiency and data integrity. You ll learn how to avoid problems like missing, incorrect, mismatched, or inaccurate data. You ll learn how to relate tables together to make it possible to get whatever answers you need in the future -- even if you haven t thought of the questions yet.If -- as is often the case -- you already have a database, Hernandez explains how to analyze it -- and leverage it. You ll learn how to identify new information requirements, determine new business rules that need to be applied, and apply them.Hernandez starts with an introduction to databases, relational databases, and the idea and objectives of database design. Next, you ll walk through the key elements of the database design process: establishing table structures and relationships, assigning primary keys, setting field specifications, and setting up views. Hernandez s extensive coverage of data integrity includes a full chapter on establishing business rules and using validation tables.Hernandez surveys bad design techniques in a chapter on what not to do -- and finally, helps you identify those rare instances when it makes sense to bend or even break the conventional rules of database design.There s plenty that s new in this edition. Hernandez has gone over his text and illustrations with a fine-tooth comb to improve their already impressive clarity. You ll find updates to reflect new advances in technology, including web database applications. There are expanded and improved discussions of nulls and many-to-many relationships; multivalued fields; primary keys; and SQL data type fields. There s a new Quick Reference database design flowchart. A new glossary. New review questions at the end of every chapter.Finally, it s worth mentioning what this book isn t. It isn t a guide to any specific database platform -- so you can use it whether you re running Access, SQL Server, or Oracle, MySQL or PostgreSQL. And it isn t an SQL guide. (If that s what you need, Michael J. Hernandez has also coauthored the superb SQL Queries for Mere Mortals). But if database design is what you need to learn, this book s worth its weight in gold. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

R Programming for Data Science


Roger D. Peng - 2015
    

Decision Trees and Random Forests: A Visual Introduction For Beginners: A Simple Guide to Machine Learning with Decision Trees


Chris Smith - 2017
     They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own machine learning algorithms in Python, this book is for you.

The Protocols (TCP/IP Illustrated, Volume 1)


W. Richard Stevens - 1993
    In eight chapters, it provides the most thorough coverage of TCP available. It also covers the newest TCP/IP features, including multicasting, path MTU discovery and long fat pipes. The author describes various protocols, including ARP, ICMP and UDP. He utilizes network diagnostic tools to actually show the protocols in action. He also explains how to avoid silly window syndrome (SWS) by using numerous helpful diagrams. This book gives you a broader understanding of concepts like connection establishment, timeout, retransmission and fragmentation. It is ideal for anyone wanting to gain a greater understanding of how the TCP/IP protocols work.

Learning XML


Erik T. Ray - 2001
    Fortunately, there s a solution: Erik T. Ray s Learning XML, Second Edition. This book presents an outstanding birds-eye view of the XML landscape. It s definitely not a programming book (though it does introduce some key XML programming issues). Rather, it s focused on key ideas you need to understand whatever you want to do with XML. That could be document management, web or print content delivery, application integration, B2B commerce, data storage, internationalization -- you name it.Ray s day job is software developer and XML specialist at O Reilly. There, he s helped to implement a complete publishing solution, using DocBook-XML and Perl to produce books in print, on CD-ROM, and for online delivery. So he understands XML from the real-world point of view of someone with a job to do. His first goal is to take on the big questions. First, What is XML? Ray attacks this question from multiple angles, introducing XML as a general-purpose information storage system, a markup language toolkit, and an open standard (or, increasingly, a collection of standards). What can (and can t) you do with XML? What s the history that led us here? And what tools do you need to get started? Next, he introduces the basic building blocks of XML markup and all XML-derived languages: stuff you ll need to know regardless of your goals. Through easy examples, you ll understand elements, attributes, entities, and processing instructions -- and how they fit together in a well-formed XML document. Then, it s on to representing information with XML -- in other words, understanding the nature and planning the structure of the documents you ll be using. Ray starts simply, then builds on his basic examples to discuss narrative documents with text flows, block and inline elements, and titled sections. Once you can handle those, he discusses more complex information modeling, as used in specialized markup languages such as VML. This edition contains an entirely new chapter on XML Schemas -- what he calls the shepherds that keep documents from straying outside of the herd and causing trouble. Schemas, of course, have become hugely important. This is one of the best plain-English introductions to the topic we ve seen. Ray then turns to presentation, introducing CSS stylesheets, basic usage, rule matching, properties, and more. A little later on, he returns to the subject -- this time with a complete introduction to XSL-FO that illuminates two powerful examples. The first is TEI-XML, a markup language for scholarly documents (Ray presents a Shakespearean sonnet, appropriately coded). The second is the immensely powerful DocBook -- which, as we ve observed, Ray knows inside and out. Learning XML is superbly written. Clear explanations. Simple examples. Great metaphors and analogies. And excellent introductions to nearly every topic that matters, from links to presentation, transformation to internationalization. If you re just starting out with XML, you re lucky to have it. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.

Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules


Jeff Johnson - 2010
    But as the field evolves, designers enter the field from many disciplines. Practitioners today have enough experience in UI design that they have been exposed to design rules, but it is essential that they understand the psychology behind the rules in order to effectively apply them. In "Designing with the Mind in Mind," Jeff Johnson, author of the best selling "GUI Bloopers," provides designers with just enough background in perceptual and cognitive psychology that UI design guidelines make intuitive sense rather than being just a list of rules to follow. * The first practical, all-in-one source for practitioners on user interface design rules and why, when and how to apply them.* Provides just enough background into the reasoning behind interface design rules that practitioners can make informed decisions in every project.* Gives practitioners the insight they need to make educated design decisions when confronted with tradeoffs, including competing design rules, time constrictions, or limited resources.